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ABSTRACT

This thesis consists of five chapters. The first four chapters deal with an estimation 

method for time series models via the empirical characteristic function (ECF). The 

fifth chapter proposes a test statistic which is useful in financial modelling.

In the first chapter we first review what has been done for the ECF method in 

both the independently and identically distributed (i.i.d.) case and the dependent 

case. It appears that the ECF method has received little attention in the dependent 

case. Consequently we propose an ECF method to estimate stationary time series 

models and obtain the asymptotic properties for the resulting estimator. The con­

ditions which ensure the asymptotic properties appear regular. The ECF method is 

useful because many examples have been found in economics where the traditional 

estimation methods, such as the maximum likelihood (ML) estimation method, do 

not work or are not easy to work with. In some cases the likelihood has no closed 

form and in some other cases the likelihood function is not bounded over the param­

eter space. In some cases the likelihood has a closed form and is bounded over the 

parameter space, but it is too difficult to numerically approximate. The intuition 

why the ECF method can work well is that the characteristic function (CF) has a 

one-to-one correspondence with the distribution function and hence the ECF contains 

all the information in the data. Also the ECF is uniformly bounded and absolutely 

continuous.

In Chapter 2 we apply the ECF method to estimate the linear ARMA models. 

To use the ECF method efficiently, the optimal weight functions and the estimating 

equations are derived for the ARMA models. The Monte Carlo studies confirm the 

validity of the ECF method in terms of finite sample properties. For example, for the 

MA(1) and AR(1) models, the ECF method can work as well as the ML method. For

iii
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the ARMA(1,1) model, the ECF method outperforms the conditional ML method.

In the next two chapters we apply the ECF method to estimate the non-linear time 

series models. In Chapter 3, we focus on the estimation of the stochastic volatility 

(SV) model. The SV model is considered because this model has attracted a great 

deal of attention in both finance and macroeconomics. However, the estimation of 

the model is hard because the likelihood function for the model has no closed form. 

Consequently, the characteristic function for a SV model is derived and an estimation 

method based on the ECF is used. The Monte Carlo study shows that the ECF 

method is a viable alternative. An empirical application is considered in this chapter 

and suggests different empirical results from what are normally found. In Chapter 4, 

we estimate a diffusion jump process by using the ECF method, where the intensity 

parameter in the Poisson jum p process is self-exciting. This model is considered 

because it is an alternative way to the ARCH-type models to describe the movement 

of stock prices but it allows for the dis-continuity in the sample path. However, the 

estimation of the model is hard because the likelihood function for the model has no 

closed form. Consequently, the characteristic function for this model is obtained and 

hence we estimate the model using the ECF method. The Monte Carlo study shows 

that the ECF method outperforms the generalized method of moments (GMM). An 

empirical application is considered and we find some interesting empirical results.

In Chapter 5 we propose a test statistic to distinguish finite-variance models and 

infinite-variance models for daily stock returns. The distribution form of stock returns 

is important for both theoretical and empirical analysis in finance. Most of recent 

literatures suggests that finite-variance models have greater descriptive power than 

infinite-variance Stable distribution for daily stock returns. When we apply our test 

statistic to S&P 500 daily returns, we find that most finite-variance models can not 

be rejected when the crash days are excluded. However, all the existing finite variance 

models have been rejected when the crash days are included.

iv
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1

Chapter 1 

EMPIRICAL CHARACTERISTIC FUNCTION IN TIM E  
SERIES ESTIMATION

1.1 Introduction

Maximum likelihood estimation under parametric assumptions is one of the most 

widely used estimation methods. One reason is that it results in estimators which 

are consistent, asymptotically normal and asymptotically efficient under appropri­

ate regularity conditions. To implement the maximum likelihood method, however, 

the likelihood function must be of a tractable form and is sometimes required to be 

bounded in parameter space. Unfortunately, there are many processes in economics 

where the maximum likelihood approach is difficult to implement, both in the inde­

pendently, identically distributed (i.i.d.) case and the dependent case. In the i.i.d. 

case, the processes sometimes have an unbounded likelihood function in parameter 

space. Examples include mixture of normals and switching regression models (Tit- 

terington et al (1985) and references therein). In the economic context, the mixture 

of normals and switching regression models can be viewed as contaminated data 

or structural change problems (Granger and Orr (1972)). For example, in a firm's 

monthly production series, the contamination may be due to a sudden strike, a sale
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promotion, or an annual vacation shutdown. In daily interest rate changes, the result 

of a governmental policy action can be viewed as structural change. In stock markets, 

the disclosure of information signals may lead to a parameter shift (Kon (1984)).

In other examples, however, the density functions of the processes can not be 

written in a closed form, such as the Stable distributions and compound normal and 

log-normal models. Both models are proposed to describe the behavior of stock re­

turns (Mandelbrot (1963); Fama (1965); Claxk (1973)). This problem also arises in 

the dependent case. Such examples include stochastic volatility (SV) models (Ghy- 

sels et al (1996)), ARCH-type models (Bollerslev et al (1992)), and processes which 

are compound Poisson-Normal and where the Poisson intensity is random, possibly 

dependent on past information in the series (Knight et al (1993)). Some of these 

models have found wide use in macroeconomics and finance.

Although some processes have a known density, evaluation of the exact likelihood 

can be extremely difficult for various reasons. For instance, in order to calculate the 

exact likelihood function of stationary ARMA models, one needs to deal with the 

determinant and inverse of the covariance matrix (Zinde-Walsh (1988)). However, 

such calculations can be computationally very expensive or even infeasible for a large 

number of observations.

The usual response to such difficulties arising from the likelihood is to use alterna­

tive methods1. For example, one might use some variant of the method of moments 

(Hansen (1982)), the conditional maximum likelihood (Bollerslev et al (1992)), the 

quasi-maximum likelihood (QML) (White (1982)), or the simulation based method 

(Danielsson (1994b); Duffie and Singleton (1993)). Although all methods are con­

sistent under regular conditions, some of them are not asymptotically efficient. Fur­

l In estimating ARMA models, the exact maximum likelihood method is available by use of the 
Kalman Filter (see Hamilton (1994)).
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thermore, the small sample properties of these methods may be unsatisfactory. This 

thesis discusses another alternative, a method that uses the empirical characteristic 

function (ECF).

Initiated by Parzen (1962) , the ECF has been used in many areas of inference 

such as testing for goodness of fit (Fan (1996)), testing for independence (Feuerverger 

(1990)), testing for symmetry (Feuerverger and Mureika (1977)), and parameter 

estimation .2 The main justification for the ECF method is that the characteris­

tic function (CF) has a one-to-one correspondence with the distribution function, 

and hence the ECF retains all the information present in the sample. Theoretically, 

therefore, the inference based on the ECF should work as well as that based on the 

empirical distribution function. The advantage of using the CF is that it is uni­

formly bounded and thus, should result in more robustness and greater numerical 

stability. The theory for the ECF method in the i.i.d. case is complete (Feuerverger 

and Mureika (1977); Csorgo (1981)). Surprisingly, however, the dependent case has 

received little attention and consequently there is great scope for research.

The purpose of this chapter is to discuss the ECF estimation method for stationary 

stochastic processes and establish the asymptotic properties of the ECF estimators 

for general stationary processes.

Section 1.2 conducts a literature review of the ECF method in both the i.i.d. case 

and dependent case. Section 1.3 proposes the ECF method in a general framework, 

specifies the assumptions and obtains the asymptotic properties of the ECF estimator 

for stationary processes. It turns out that the conditions which ensure the asymptotic

properties are regular. Theoretically, therefore, the proposed ECF method is justified.

2The references for parameter estimation include Feuerverger and McDunnough (1981a,1981b); 
Feuerverger (1990) , Heathcote (1977), Knight and Satchell (1996, 1997), Press (1972), Quandt and 
Ramsey (1978); Schmidt (1982), Paulson et al (1975) and Yao and Morgan (1996).
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1.2 Literature Review

In this section, a literature review is performed on the ECF method in the i.i.d. case 

and dependent case. The ECF method in both cases shares the same spirit, that is, 

to match some distance measure between the ECF and the CF. While the literature 

in the i.i.d. case is extensive, very little research has been reported in the dependent 

case. I will present them in detail.

1.2.1 T h e I.I .D . Case

Suppose (Ai }“ _<*, is a sequence of independent univariate random variables with 

common distribution function F q (x ) which depends on a vector of unknown pa­

rameters 0. We have a finite realization {xi,X2 , . . .  ,xn} and we wish to estimate

0. The CF is defined as c(r;0) =  f  exp(irx) dFg(x), and the ECF is defined as 

Cn(r) = £ exp(irxj), where r is the transformation variable. Hence the ECF is 

the sample counter part of the CF and contains the information of the data, while 

the CF contains the information of the parameters.

By the S.L.L.N. Cn(r) ^4' c(r;0) for any fixed r < +oo. If £j.Y | 1+<5 < +oc for 

some positive 6, Feuerverger and Mureika (1977) provide a weak convergence result 

for Yn(r;0) =  y j n ^ i r )  — c(r;0)). That is, Yn(r;0)=>W(r; 0) in every finite interval, 

where Y(r;0)  is a complex valued Gaussian process.3 Moreover, Csorgo (1981) ob­

tains the strong approximation for Yn(r;0). Both the weak convergence and strong 

approximation justify the estimation method via the ECF.

An estimation procedure using the ECF is to choose 0n to minimize4

I . W  =  I  M r )  -  c(r;8)\2 dG(r), (2.1)

3“ ^  ” is defined as weak convergence (see Billingsley (1986)).
4f  means in the thesis unless specified.
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or

^n(0 ) =  1 1Cn(r) -  c(r; 0)\2g{r) dr, (2 .2 )

or to solve the estimating equation

J  u;0 (r)(c„(r) -  c(r; 0)) dr = 0, (2.3)

where G(r),g(r)  and wq(t) are weight functions. Under suitable regularity assump­

tions Heathcote (1977) establishes the strong consistency and asymptotic normality 

for 0n.

A simple estimating procedure is to choose G(r) to be a step function with a 

finite number of jumps. This discrete type procedure consists of two steps. Firstly, 

we choose q (no less than the number of the unknown parameters), and r l5 r2, .... rq. 

Secondly,

min M o )  “  c(rj5 0)\2- (2-4)

Basically this is the procedure proposed by Quandt and Ramsey (1978) and is essen­

tially the ordinary least square (OLS) procedure.5

Since Cn(ri), ■ ■ ■, Cn{rq) are not i.i.d., the OLS procedure results in inefficient es­

timators. Consequently, Schmidt (1982) proposes a more efficient estimator of 6 by 

performing the generalized least square (GLS) procedure,6’7

JpX Y ,  ~  c(0 ; 0))6(j,*)(cn(nt) -  c(rk; 0 )), (2.5)
0 €fc»J=1Jk=1

where Cl =  (^o,*)) t îe inverse of a consistent estimate of the variance-covariance

m atrix of Cntn), • • •, Cn(rq), and c is the conjugate of c. For both the OLS and GLS,

5They use the moment generating function instead of the CF.
6 He also uses the moment generating function.
7Basically the procedure is a feasible generalized least square FGLS which results in an estimator 

asymptotically equivalent to the GLS estimator.
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the resulting estimators as well as the asymptotic variance depend on the transfor­

mation variables, the r ’s. Not surprisingly the efficiency also depends on these r ’s. 

Feuerverger and McDunnough (1981b) show that if the r ’s are sufficiently fine and 

extended the Cramer-Rao lower bound can be reached. However, a t least two prac­

tical difficulties arise when the optimal r ’s are to be chosen. First, how many r ’s 

should be used (i.e., the value of q)l Second, how to make them optimal? Regarding 

the second question, Schmidt (1982) proposes to choose r ’s to minimize the determi­

nant of the asymptotic covariance m atrix of the estimator for a given q. This makes 

sense in the single parameter case. However, there is no clear procedure in the multi­

parameter case. Yao and Morgan (1996) advocate minimizing the mean square error 

rather than the asymptotic variance.8 To make the minimization numerically more 

efficient, Feuerverger and McDunnough (1981b) suggest using equally spaced points,

i.e., rj =  t ■ j,  j  =  1,2, . . . ,q .  The greater difficulty involves the first question, the 

choice of q. Schmidt (1982) points out that the choice of q would have to await the 

discovery of the sample property of the estimates, which is still an open question.

Alternatively one can choose the transformation variables continuously. The tech­

nique can be accomplished by using a continuous weight. For example, Paulson et al 

(1975) choose g(r) to be exp(—r2). However, the resulting estimators for an arbitrary 

weight are inefficient.

To find an optimal weight function, we focus on Equation (2.3). Consider the first 

order condition of maximizing the log likelihood function,

I  d l ° g Q Q ^  d(Fn(x) -  Fq{x)) =  0,

where Fn(x ) is the empirical distribution function defined in Billingsley (1968). Ap­

8They detail the application using the Laplace transformation.
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plying the Parseval Theorem to the above equation, we obtain

J r J trx dx (cn(r) -  c(r; 9)) dr =  0.

Therefore, the resulting estimator of (2.3) is equivalent to the maximum likelihood 

estimator (MLE) if the weight function wq is proportional to the function below,

An example is provided by the normal distribution. Let { x l , x 2, . . .  , x T} be inde­

pendent and identically distributed N(Q, a2) random variables, where a2 is the only 

unknown parameter. Thus

log f ( x )  = log 2tr -  |  log a2 -

and
dlogf(x)  i _|_ x 2

da2 2a2 2 a4

From (2.6), the optimal weight function can chosen as

!(r) =  h l {~ ^  +  ^ ) e x p { ~ i r x ) d x  ( 2 J )

1 W  ~  ^ z W r ) ,2 a2 v ' 2er4 

where £(•) is the Dirac delta function and defined as,

0 if x  ^  0
8{x) =

+00  if x  =  0 ,

For the rigirious definition on 8(x) and the discussion of its properties, see Gel’Fan 

(1964). Substituting the optimal weight function into the estimating equation (2.3) 

we have

° =  / * - 2o25^  “  ^ 7 5"(r ) K ( r ) dr

=  - ^ 2  /  s (r )cn(r ) d r ~  /  s"(r)cn(r) dr

1 - (t\\ 1 a2cn^ irC nl0 ) -  o_4  s L S ~  lr=0>2cr2 2cr4 dr2
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This implies
d 2Cn(r) 1 T

cr2„ = lr= o  =  ; E 4dr2 |r- u n j=l

which is the same as the MLE of a2. Note that Paulson et al (1975) choose the 

weight function to be exp(—r2) and Heathcote (1977) chooses d(x) as the weight. 

Both exp(—r2) and S(x) together with our weight function assign more weight on 

an interval around the origin and hence are consistent with the theory that the CF 

contains the most information. See Theorem 7.2.1 of Lukacs (1970).9 However, by 

including the second order derivative of 6(x), our weight function puts even larger 

weight on the origin and is expected to result in the most efficient estimator.

1.2 .2  T h e D ep en d en t Case

Let {yj}JL-oa be a univariate, stationary time series whose distribution depends upon 

a vector of unknown parameters, 0. We wish to estimate 0 from a finite realization 

{t/i, t/2, ..., yr}- The overlapping blocks for yx, y2, •••, yr  are defined as,

=  { V j i  * * •  i  V j + p )  1 J  =  • • • >  T  P-

Hence each block has p observations overlapping with the adjacent blocks. The CF 

of each block is defined as

c{r\Q) =  E(exp(irrXj)),

where r  =  ( r1, ..., rp+1)'. The ECF is defined as

1 n
Cn(r ) =  ~ X ] eXP (ir/:Cj ) ’ 

71 j=1

where n — T  — p.

9For a unbounded random variable which has moment generating function discussed in this thesis, 
the uniqueness theorem still applies.
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The estimation procedure is similar to the i.i.d. case. i.e.. to match some distance 

between the ECF and the CF. Unfortunately, only two papers are related to the de­

pendent case. The first work is published by Feuerverger (1990) and the second one 

is reported by Knight and Satchell (1996). Both papers propose to match the ECF 

and the CF over a grid of finite points and hence we call the procedure “the dis­

crete ECF method (DECF)”. Feuerverger (1990) proves that under some regularity 

conditions, the resulting estimators can achieve the Cramer-Rao lower bound if p is 

sufficiently large and the grid of points is sufficiently fine and extended. However, 

he has not applied the procedure to estimate any time-series model. Knight and 

Satchell (1996) detail the application of the DECF method to stationary stochas­

tic processes and give a multi-step procedure. We review their procedure in de­

tail. Firstly, choose q and an arbitrary set of vectors ( r i , . . .  , r 9), where each vec­

tor is of length p + 1. That is, choose G(r)  to be a step function with q jumping 

points. Secondly, define V  =  (Rec{ri ,Q ) , ..., R ec(rq-, 0), I m c ( r i ; 6 ) , ..., Irnc(rq: 0))', 

and Vn =  ( R e C n ( r i ) ,R e C n ( r q), I m C n ^ r i ) , l T n C n ( r q)y , and choose r  to min­

imize (Vn — V)'{Vn — V) to obtain a consistent estimate for H, Cl, where ft =  

Q r r  Q r i
is the covariance matrix of Vn. Thirdly, choose r  to minimize some

Q i r  &ri
measure of the asymptotic covariance matrix of the GLS estimators. Fourthly, based

on the optimal r  obtained at step 3, repeat step 1 to obtain another consistent esti-
: : - l

mate for Q, say Q. Finally choose 0 to minimize (Vn — V)'Cl (Vn — V). The explicit

form for the covariance matrix fi is given by Knight and Satchell (1996). Choosing

p = 2, q =  5 and an arbitrary ( t *i , . . . , r q), Knight and Satchell (1996) use the DECF

method to estimate an MA(1) model and perform a Monte Carlo simulation. They

find that the DECF method is a viable alternative method, however, the performance

of the DECF method is strictly dominated by that of the MLE.
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The finding is not surprising and can be explained intuitively. Since matching 

the ECF and the CF over a grid of finite points is equivalent to matching a finite 

number of moments, the DECF method is, in essence, equivalent to the GMM. Just 

like sometimes it is not obvious how many and which moments to choose for the 

GMM, the difficulties for the DECF method are how many and which r ’s we should 

use.

The difficulty also comes from the choice of p. For the blocks to capture all the 

information in the original series, the choice of p could be critical. However, there is a 

trade-off between a large p and a small p. If we choose a large p, we should expect the 

moving blocks contain all the information in the original series. By doing so we lose 

no information and the estimation via the ECF based on such blocks could be efficient 

when an optimal weight function is used. In fact, according to the inversion theorem, 

the joint density is the Fourier inversion of the CF of moving blocks. Provided the 

Fourier inversion can be implemented efficiently, the ECF estimator is asymptotically 

equivalent to the MLE. Unfortunately, such an inversion is high dimensional integral 

and sometimes cannot be simplified. Therefore, the procedure could be numerically 

infeasible. On the other hand, a smaller p could be chosen to achieve the feasibility 

for the procedure, however, the n(= T  — p) overlapping blocks may not retain all 

the important information of the series. Consequently, several issues arise here. The 

first issue is whether and under what conditions the ECF estimator has desirable 

asymptotic properties for general p and general weight. The second one is how to 

choose p and the weight in order to construct an asymptotically efficient estimator 

via the ECF method. The last issue that needs to be addressed is the finite sample 

properties of the ECF estimator. In the next section we will propose the ECF method 

for stationary stochastic processes in more general framework as well as obtain the 

asymptotic properties of the resulting estimator.
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1.3 ECF M ethod and Asymptotic Properties

Observing the difficulties involved in the DECF method, for stationary stochastic 

processes, we propose the ECF method which minimizes the integral

ln{0)= J  ■■■ J  \ cn (r )-c (r]0 ) \2dG(r), (3.1)

or

J " ’J \ cn{ r )  - c ( r ; 0 ) \ 2g { r ) dr l ■■■ drp+i, (3.2)

or solves the following estimating equation

j  ■ ■ • J  wQ(r){cn(r)  — c(r; d)) dr  =  0. (3.3)

If the weight function G(r)  is chosen to be a step function, the procedure is indeed 

the one proposed by Feuerverger (1990) and Knight and Satchell (1996). Hence the 

procedure we propose includes the DECF method as a special case. We can certainly 

choose an alternative weight. If a continuous weight function is used, the procedure 

will basically match all the moments continuously, including integer moments, frac­

tion moments and irrational moments. In this sense, the procedure exploits more 

information in the sample. Another advantage of using a continuous weight function 

is that one no longer needs to choose the transformation variables, r ’s, because they 

are simply integrated out. In this thesis we refer the ECF method with a continuous 

weight as “the continuous ECF method (CECF)” . The simplest weight for the CECF 

method is probably <?(r) =  1 (or G ( r ) =  r). This procedure is referred to “the OLS 

of the continuous ECF method (OLS-CECF))” . We can also use “the weighted least 

square of the continuous ECF method (WLS-CECF)” by choosing g(r)  to be a non- 

equally weighted function such as an exponential function. Furthermore, by using 

the Parseval Theorem, we can obtain an optimal weight function, w m(r),

( ± r '  f . . .  f  e x p ( - i r ' X j ) 9108 f l g M g  -  ■ d y ,  . . .  dy ,+ r . (3.4)
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The weight is optimal in the sense that based on w'(r)  and Equation (3.3), the 

resulting estimator can achieve the Cramer-Rao lower bound when p is sufficiently 

large (Feuerverger (1990)). The procedure associated with the optimal weight is 

referred to “the GLS of the continuous ECF method (GLS-CECF)” .

For simplicity of notation we deal only with the single parameter case and the 

estimator resulting from (3.1) in the next two theorems. The multi-parameter case will 

be considered in Chapter 3 and Chapter 4. The equation (3.1) consists of minimizing a 

distance function and hence can be regarded as the Fourier version of the M-estimators 

first discussed in the i.i.d. case by Huber (1981) and extended to the dependent case 

by Martin and Yohai (1986) . The necessary regularity conditions will be outlined in 

detail. Based on the conditions the consistency and asymptotic normality are then 

reported and proved. Theoretically, therefore, we justify the proposed procedure. 

A ssum ptions:

(Al) Let 0  be a compact set.

(A2) In(8) can be differentiated under the integral sign with respect to 9.

(A3) 9n =  argmineee l n{9).

(A4) True value 90 lies in the interior of ©.

(A5) The sequence {y£} is ergodic.

(A6) c"(r; 0) exists and is uniformly bounded by G-integrable function, where the 

prime denotes differentiation with respect to 9.

(A7) The sequence {yt} satisfies the p mixing condition. That is, if p(q) is the 

maximum correlation possible between functions of the y /s  separated in time by a 

distance <7, then
OO

X > (g ) < 00 .
<7=1

(A8)/-. . / (c'(r;ff))2|fciBd G ( r ) # 0.
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T h eo re m  1.3.1 For any fixed p, under assumptions A1-A5, the ECF estimator by 

minimizing (3.1) is strongly consistent, i.e.,

On ^  00

P ro o f: Assumption (A5) implies that

Hence, we have,

and

Cn(r) ^4 c(r:0o) Vr G 5Rp+l,

Recnir)  ^4 Rec(r;0o),

/m c ^ r )  ^4 Imc(r;6o).

For any 6 > 0, consider

I n ( 0 o ± S ) - I n (0o) =  / • • • / { Re c(r; 0O ±  6) -  Re c(r; 0O)

Re c(r; 0O ±  6) — Re c(r; 90) — 2Recn(r) 

I m  c(r; 0O ±  S) — I m  c(r ; 0O)

/m c (r ; 0o ± 6 )  — I m  c(r; 0O) — 2Imcn{r) } rfG(r).

Taking expectation, we have

£ { / n(0o ± £ ) - / „ ( 0o)}

= J " ' f  { |# e c ( r ;0o ±  5) -  Rec(r;60)

> 0 ,

+ I m  c(r; 0q ±  6) -  Im  c(r ; 0O) '} d G ( r )

and it follows from the strong law of large numbers that the inequality / n(00 ±  £) > 

7n(0o) holds almost surely. By Assumption (A3), we have

0n -4 0o-

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



www.manaraa.com

14

This is the result of the strong consistency. I

T heorem  1.3.2 For any fixed p, if  9n ^4 90, under assumptions A 6-A 8, the ECF  

estimator by minimizing (3.1) is asymptotically normal, i.e.,

M e n - 6 o ) ^ N ( 0 , W 2), 

where the expression of W 2 is given in the proof.

P roof: Consider the first order condition of the minimization problem (3.1) and by 

Assumption (A2), we have,

I'n(9) = 2 j - " j \ ^ R e c n(r)-Rec{r-9)][R ec ,{r-,9)

+ ^/mcn(r) — Im c (r \9 ) I m c ' { r \0) j  dG(r)

=  — ̂  ' ' f  |  cos(r'xj) — Rec(r;9)^Rec'(r;9)  (3.5)

s in (r 'x j ) — Imc(r;9) Im  c'(r; 0)j dG(r)+  

=  0 .

Define

Kj{9 ) = J ' "  J  ^ cos(r 'x j) — i2ec(r;0 )Ji?ec'(r;0)

+ \sin{r'xj) — Imc(r\9)  Imc'(r- ,9)^dG(r),  (3.6)

hence I'n(9) is the partial sum of random sequence {K\{9), K 2{9), • • •} multiplied by 

a constant. Of course the random sequence is not independently distributed since 

x'jS are correlated with each other. However, we may show that Assumption (A7) 

implies the p mixing for the sequence {Ki(9), K2(9), ■ ■ ■}. Calculating the variance of 

the partial sum, we have

± V a r ( K l (9) + --- + K n(9)) (3.7)
n*

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



www.manaraa.com

15

j  =  l fc=L

+Rec'(r-,9)Imc'(s-,6)— ^2  Cov(cos(r 'x j) ,  s in(s 'xk) j  4-
2 " "

Imc'[r-,Q)Imc,{s',6)—  5Z C ° ^ ^ m ( r /x_7), sin(s'xk)J  |  dG(r)dG(s).

j=ik=i 
^ n n

J =  1 fc=l

If we define

^fc(r,s) =  EfexpCz'r'xr 4- zs'xjfc+ l)],

we can rewrite the covariance as,

1 71 71 /^ V > / r t \
~2 5 2 5 2 C ov( COS(r 'Xj ) ’COS(S,Xk)) n 2 ^ [ £ z i  v /
l i 71-1

=  —  (Rec(r  4- s) 4- R ec(r  — s)) — f?ec(r)i?ec(s) 4- —-  5Z(n — k){Re ^ jt(r, s) 
2n 2n2 ^

+i?e ^fc(r, —s) +  ^ ( s ,  r)  +  ^ ( s ,  —r)) ,

J — l K—l

1 1 71-1
= ——{Im c(r — s) 4- I m c ( r  — s)) — Re c(r)Re c(s) 4- —— V ](n -  k){Im  ^ ( r .  s) 

2n in "1

—I m  ^ ^ (r, —s) 4- /m  ^ ( s ,  r)  4- /m  ^ ( s ,  — r)) ,

sin(r'*j), s i n { s ' x k )  J
n  j = l * = l  '  '

1 1 " _1
=  — (Re c(r + s) + Re c(r — s )) — I m  c(r)Im  c(s) 4- — ^ ^Z (n ~ k)(Re  'frjt(r, —s)

ZTl £TL jL ^

- R e  ^fc(r, s) 4- Re  jt(s, - r )  -  Re ^ ( s ,  r )) ,

where c(r) =  c(r;0). Assumption (A7) implies the convergence of

Y l C o v l  exp(ir/x 1) ,exp(zr ,x fc+i)J.

Consequently, we can define E2 as

E2 =  lim \ v a r i K i i 0 o )  +  • • • +  K n(B0)).n - + o o  Yi* (3.8)
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Using a central limit theorem for stationary processes (for example, Theorem 18.5.4 

in Ibragimov and Linnik (1971)), we have

n l' 2rn(0o) N(0,4£2). (3.9)

Consider the second derivative of In{9)

/"(0) =  2 \ [R ec '{r -Q ) f+  [Imd{r-d)\2 - [ R e ^ r )  -  Rec(r:9)]Rec"(r:d)

~ [/m c„(r)  -  /m c (r ;0 )] /m c " (r ;0 ) jd G (r) , (3.10)

and by the S.L.L.N., we have

Wo) ‘A -  £[/"(«„)] = 2  J -  - J  \ c ' ( r ;d0)\2 d G ( r ) .

The Taylor expansion

rn(0n) = I'n(0o) +  (0n -  90) + I ”{Bo +  e(9n -  B0))

implies

n 1/2(0„ -  0o) = --------------------- A  jv(o . W 2) ,  (3.11)
/" (0o +  e(0„ - 0o)) V ' )

where
V2M' 2 _  __________^   /o jo]

[ / • * • /  Ic/(r; «o)|* dG (r)P ' ^  ]

This is the result of the asymptotic normality. I
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Chapter 2 

ESTIMATION OF LINEAR TIME SERIES MODELS VIA  
EMPIRICAL CHARACTERISTIC FUNCTION

2.1 Introduction

In this chapter, we will apply the ECF method proposed in Chapter 1 to estimate 

the Gaussian ARMA models, and examine the finite sample properties of the ECF 

method and compare it to the traditional estimation methods such as the maximum 

likelihood (ML) method and the conditional maximum likelihood (CML) method. 

The conclusion is that the ECF method can work as well as the maximum likelihood 

method and outperform the conditional maximum likelihood method. In Section 2.2 

we review the traditional estimation methods for the Gaussian ARMA models. In 

Section 2.3 we use the ECF method to estimate the Gaussian ARMA models. To use 

the ECF method most efficiently, the optimal weights and estimating equations for 

the Gaussian ARMA model are derived in this section. Section 2.4 performs Monte 

Carlo studies and compares the finite sample properties of the ECF method with the 

those of the traditional estimation methods.

2.2 Review of Estimation of Gaussian ARM A Models

Consider the Gaussian ARMA(/, m) model,

Ft =  Pi Vt_i +  F piYt-i-i +  £t — <t>\£t-i — • • • — (2.1)
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where et ~  i.i.d.N( 0, a 2). Let 0 =  (a2, <fii, • • ■ ,4>i,Pi, • • •, pm)' denote the population 

parameters to be estimated. { j ^ , yr}  is a realization. Three facts about the Gaus­

sian ARMA(Z, m) model are reviewed here. Firstly, some assumptions are needed 

for the stationary property of the model. For example, If |0 i| < 1, the ARMA(1,0) 

model (i.e., the AR(1) model) is stationary. In this chapter we assume all the series 

to be stationary. Secondly, the stationary Gaussian ARMA models satisfy the p mix­

ing condition. Finally, the maximum likelihood approach provides the most efficient 

estimators, at least asymptotically. Denote the covariance matrix of y  =  (j/t , ..., yT) 

by a 2<£ tx t-  It is straightforward to obtain the log likelihood function,

L(0) =  - y  log(2?r) -  ^log\$\ -  y  log a 2 -  (2 .2 )

Maximizing the log likelihood function results in the MLE. Let 0 n be the MLE of 

0 , then yjn(0n — 0) A  N(0 ,1~ l(0)), where I ~ l(0) is the Cramer-Rao lower bound. 

Hence the MLE is asymptotically most efficient. Unfortunately, in practice the max­

imum likelihood approach by the use of inverting the covariance matrix is not always 

feasible, or is feasible but numerically not efficient. Consequently a state space rep­

resentation of likelihood and then the Kalman Filter technique could be used. See 

Hamilton (1994) for more references. Alternatively, in this section we discuss three

Gaussian ARMA models, only two of which can be easily estimated by the full max­

imum likelihood method via inversion the covariance matrix.

2.2.1 M A (1) M odel

Consider the Gaussian MA(1) model

Yt = et -  f c t - u  (2.3)
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where et ~  i . i .d.N(0,a2), and 0  =  (cr2, 0 ) is the population parameter. For the 

MA(1) model, we can write $  as,

1 +  0 2 - 0  0 ••• 0

— 0 1 +  02 —0 • - • 0

0 - 0  1 +  02 ••• 0 • (2.4)

0 0 0 • • •  1 +  02

W hittle (1983) has presented the exact inverse of 0 . The (j , k ) th element of $ -1 is 

given by
(0 - i - i  _  0 j-+i)(0 - ™  -  4>T- k)

( 2 . 0 )
0> +  l )(0 0r - fc)

0(0— 1 — 0)(0-r_l — 0T+l) 

where A: =  0,1,..., T  — 1, and j  =  0 ,1,..., A; — 1. Furthermore the determinant of $

can be expressed as

1 _  ^2(T+l)
|$ | =  l +  0 2 + 0 4 +  ... +  02T= * ( 2 .6 )

1 -  02 ‘

Even though an analytical solution for maximizing the exact likelihood function (2 .2 ) 

is not readily found, it is straightforward to maximize it numerically given (2.4) and 

(2.5) and leads to the MLE. It should be noted, however, the exact inverse of $  

is complicated for high-order moving-average models. Because the exact likelihood 

function is computationally expensive to evaluate for high-order MA processes, in 

practice the conditional likelihood function is maximized instead. We review this 

approach for the MA(1) model in detail.

If the value of were known with certainty, then

(2.7)

If the initial value of e0 is set to be the expected value, i.e., £o =  0, the conditional 

likelihood function can be obtained by

/ v r , . . . ,V 'i |eo=o(yt,  • • • , V l )  =  • / V i | £ o = o ( y i ) n £ r2 / v t |e t - i  ( l / t k f - l ) , ( 2 .8 )
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where the sequence {^i, • ••, £?} can be calculated from {yx, ■ ■ •, yT } by the following 

iterative formula

St — yt — 4>yt- 1  +  4>2y t - 2 +  • • • +  ( —l ) 4 l 4>t l y \ +  ( —i Y ^ sq. (2.9)

In this thesis the resulting estimator by maximizing the conditional likelihood such 

as (2.8) is labeled “conditional maximum likelihood estimator (CMLE)” .

Note that the effect of imposing £q =  0 will quickly die out when |0 | is sub­

stantially less than unity, thus equation (2 .8) will give a good approximation to the 

unconditional likelihood for a reasonably large sample size.

2 .2 .2  A R (1 ) M od el

Consider the Gaussian AR(1) model

model, we can write <£ as,

1 -  P2

— pYt-i — St, (2 .10)

=  (a2, p) is the population parameter. For the AR(1)
i

i

p 1 p ••• pT 2

p2 p 1 ••• pr - 3 (2 .11)

T— 1 pT-2 pT- 3 . . .  j

The exact inverse of $  is

1 - p  0 • • • 0

—p 1 +  p2 - p  • • • 0

0 —p 1 +  p2 • • • 0

0 0 

0 0 

0 0

0 0 

0 0

0

0

- p  1 +  p2 - p  

0 - p  1

(2 . 12 )
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And the determinant of $  is

1*1 =  (213) 

Consider the first order conditions of maximizing (2.2) using (2.12) and (2.13). If we 

concentrate out a2, we have the following estimating equation for p,

T - 1

0 — 2p(y2 4- yj)  +  2p(T  +  1 +  (1 — T)p2) yfc2 
£=1

- (4 p 2 - 2 T  + 2Tp2) £  ytyt+l. (2.14)
£ = l

The real root of the above cubic equation leads to the MLE of p. 

The CMLE of p for the AR(1) model can be obtained by

max f y T Y2\Yl(yt,---,y2)-

The procedure is equivalent to the OLS, i.e.,

T
min

'  £=2

Since the first observation in the OLS procedure is ignored, the finite sample prop­

erties of the MLE must be at least as good than those of the CMLE. However, if the 

sample size T  is sufficiently large, the first observation makes a negligible contribution 

to the total likelihood. The MLE and the CMLE turn out to have the same large 

sample properties. Because the CMLE yields an analytical form for the estimators, 

it is used often in application when T  is laxge.

2.2.3 G aussian  A R M A (1,1) M odel 

Consider the Gaussian ARMA(1, 1) model

Yt =  pYt-1 +  St — <}>£t- i  (2.16)
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where s t ~  i . i.d.N(0,a2), and 0 =  (cx2,p, 0 ) is the population parameter. For the 

Gaussian ARMA(1, 1) model, we can write $  as,

\+<t>2 -2p<j> p(l+<t>2-2p<t>) _  , pT~ 1 {1+02 —2p0) _  T - 2<P p \ i - t -q j- - * p < p )  _  1 p -  -^1 -t-< p--£pq>) r - 2 a
i - p 2 •••  [ z p  P <P

-4>2 -2 p Q ) _  i p(l+4>2 ~ 2 p 0 )  _  i p T ~ 2(l+<j>2 —2p<j>) _  r - 3 - l
l —p2 V7 l —p2 ^  1— p2 r  V'

Pr  l ( l + 0 2- 2 p 0 )  _  q T - 2 ±  p T ~ 2 (l+<j>2 —2p<j>) _  T - . . . I + 0 2 -2p<p
l - p 2  "  V  l —p 2 "  V  l —p 2

The AR(1) and the MA(1) are two special cases of the Gaussian ARM A(1,1) with 

0 =  0 and p =  0 respectively. However, for general (p, 0 ), there is no closed form 

for the inverse of $. Inverting this T  x T  matrix is time consuming when T  is large, 

hence implementation of maximum likelihood method is time consuming for a large 

T. Because of the difficulties involved in calculating the exact likelihood function, 

in practice the conditional likelihood function is maximized instead. We present the 

method in detail.

It is common to obtain the conditional likelihood function conditions on both y 

and s. One option is to set initial y and e equal to their expected value. T hat is. 

ijq =  0 and £o = 0. The conditional likelihood function can be obtained by

£(0) =  /w , ,niOT=o,£0=o(y£, ■ ■ •, yilyo =  o, e0 =  0) (2.17)

=  —  l o g ( 2 , r ) - - l o g

where the sequence {£(, • • • , sT\ can be calculated from the realization {2/1, • • •, yr}  

by the following iterative formula

£t — yt — PVt-i +  4>et - 1- (2-18)

Maximizing the conditional likelihood leads to the CMLE and the procedure is asymp­

totically equivalent to maximizing the exact likelihood because the initial conditions 

have negligible effect to the total likelihood when the sample size is very large.
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2.3 Estimation of Gaussian ARM A M odels Via ECF

As we point out in Chapter 1, to apply the ECF method to estimate a time-series 

model, both p and the weight function G(r) need to be specified. Regarding the choice 

of p , we know that the moving blocks with larger p retain more information and hence 

the ECF method can work better. Regarding the weight function, we can choose it 

to be a step function, as Knight and Satchell (1996) proposed. Furthermore, we can 

choose any other weight function. As long as the regularity conditions in Chapter 

1 hold, the resulting estimators are strongly consistent and asymptotically normally 

distributed. Consequently, three alternative weight functions are considered in this 

chapter to estimate the Gaussian ARMA models. The simplest one is to choose g(r) 

to be 1 in Equation (3.2) of Chapter 1 and is indeed the OLS-CECF method. We use 

the WLS-CECF method by choosing g{r) =  exp(—ar'r),  where a is a non-negative 

constant. The exponential function is chosen for two reasons. First, it is a general­

ization of the weight proposed by Paulson et al (1975) and put more weight on the 

interval around the origin, consistent with the theory that the CF contains the most 

information around the origin. The second reason is for computational convenience. 

By choosing the exponential weight for the ECF method in Gaussian ARMA models, 

we can obtain the closed form expression for In(&) given by Equation (3.2) in Chapter 

1. In fact the OLS-CECF is a particular case of the WLS-CECF. We can show that 

for any exponential weight function g(r)  and any p , the assumptions in Chapter 1 

hold for stationary Gaussian ARMA models. Therefore, the ECF estimators based 

on any exponential weight are strongly consistent and asymptotically normally dis­

tributed. The following theorem states that there is closed form expression for In(Q) 

for any stationary Gaussian ARMA model with any value of p.

T h eo re m  2.3.1 I f  {?/i,..., yr} is a finite realization of the Gaussian ARMA model
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defined by (2.16) with x 3, c(r; 9) and Cn(r) defined as before, there exits a closed form 

function to represent the following integral

J  ■ ■ ■ J  | C n ( r )  —  c ( * * ;  0 )  | 2  exp(-ar 'r )  dr,

and the expression for this function is given in Appendix A.

P ro o f: See Appendix A.

We also choose wg{r)  in Equation (3.3) of Chapter 1 to be

(h )P*' I "  I  dy, ■ ■ ■ dyJ+P. (3.1)

After solving the following estimating equation

f cn(r )w$(r ) dr = 0, (3.2)

we get the GLS-CECF estimator which is an efficient estimator provided p is large

enough in the sense that the resulting estimator can achieve the Cramer-Rao lower

bound; See Feuerverger and McDunnough (1981b). To obtain the more efficient ECF

estimator, in Theorem 2.3.2 we derive the optimal weight functions and the estimating 

equations of the GLS-CECF method for a general Gaussian ARMA(Z, m) model with 

any value of p.

T h eo re m  2.3.2 Assume {yi, 1/27 •••i 2/t}  to be a finite realization of the Gaussian 

ARMA model defined by (2.16) with 0 = (cr2, p ) =  (a2, pi, • • •, pi, <f>i, ■ ■ •, <£m). x 3, 

c(r; 0) and C n ( r )  are defined as before. Suppose the conditional density of y]+p\y3, . . . .  

y3+p- i  could be expressed as

(Vj+p\Vji • • • - Vj+P-1) ~  N  (f i(p)yj  H------ +  f p(p)y3+p- 1, a2g{p)) ,
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where g(p), f x(p), ■ ■ ■, f p(p) e  C l . Let

'  f i ( p )  M p ) M p ) 

h ( P)h ip )  H ( p )

/ l ( p ) /P-l(p )  ~ h { p )

/ 2(p)/p-l(p) ~ /2  (P)

/ P- I (P ) /1(P) /p - l(p ) /2(p) 

- f i ( p )  ~ h  (P)

/ P2- 1(P)

- /p -l(P )

- /p - l(p )

1

(3-3)

and

D   3A£>i+m -  aPm

Furthermore, let M A M ' ,H iA iH [ , - - - ,H i+mAi+mH'l+m be the eigenvalue decomposi­

tion of A, Bi, • • •, respectively. Hence, M, H\, ■ ■ ■, # f+m are orthonormal matri­

ces and A, Ai, • • • . Aj+m are diagonal matrices with the eigenvalues of A. B  t,  • • • . B[+m 

respectively. Define
(

A  =

A1 0 0 ••• 0

0 A2 0 ••• 0

0 0 0 ••• Ap+1

\

and

A/r =

0 0 

0 A2 0

0

0

v 0 0 0 ••• AjT1

for k =  1, • •• ,/  +  m. Then the optimal weight functions are

wa 2 (r) =
2a 2

^(r1) ••• £(rp+l)

-[A1<5"(s1)<5(s2) • • -6 (sp+1) +
2 aAg(p)

+Ap+1<5(s1) • • -(5(sp)5"(sp+l)],

(3-4)
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and

wPk(r) =  - § 7 4 ' 5(r l ) ' " ' 5(rP+')  (3-5)

- 2^ ) 1Ai'S"(s ' )'5(s2)- - ' 5(sP+1)+' "

+ A p+1<f(.s1) - . - d > p )<S"(sp + l )]

1 IAi<S''(ti)<J(tl)---<5CfS+l)H-----2 a2g(p)

+ \ l +l6 ( t l ) . . .5 ( t* )6 y tpk+%

where (s l5 • • •, sp+l)' =  M 'r  and (tk, • • •, tk+l)' =  H ’kr  with k =  1, • • • ./  +  m. The 

delta function is the Dirac delta function defined as in Chapter 1 and gk is the partial 

derivative of g(p) with respect to pk. And the estimating equations are,

_2 _  P(P) ,o
'  -  K SH ' (3 6)

9k(p) 9k{p) _ p { p j  + 1 = o .  (3.7)

where

and

2 g(p) 2cr2g2(p) ‘2a2g(p)

q m  =  +  ■■■ +
n j =i

with k =  1, • • •, I +  m. Combine (3.6) and (3.7) tae /iaue

Oi(p) =  o 

Q2(p) =  o
(3.8)

Ql + m( p ) — 0-

which determine the estimators of p. The estimator of a2 can be easily found by 

substituting the estimators of p  back into the equation (3.6).
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P ro o f: See Appendix B.

Two examples are illustrated for the implementation of Theorem (2.3.2). 

MA(1) model defined by (2.3), if we choose p =  1, we have

21 +  02 +  04 \I AT (  $  2 1 ~hy]+l\y3 ~  n  —
+  02

Hence,

A  =

B  =

and

( l+ O 2)2 1+02

\  1 +<t>2 1 j

2<*(l-<*>2) l-<»2
(1+.*2)3 (1 + 0 2)2

I - * 2
(l+<*>2)2 0

1 +  0 2 +  0 4

1 +  02 '

Let A[, Af be two eigenvalue-values of B, we have

. 0  -  0 5 +  y/1 +  2(f)1 -  0 4 -  606 -  0 8 +  30 10 +  0 12
1 “  1 +  402 +  604 +  4 06 +  08

and
2 0 -  05 -  VI +  202 -  04 _  606 _  08 +  3010 +  012

Af = 1 +  402 +  604 +  406 +  08 

The estimating equation for 0  is,

+(A{ +  A,)i/^+ |) .

The estimating equation for a 2 is,

2 _  i  A  [0 yj +  (i +  0 2)yj+i]2
a  n (1 +  02)(1 +  02 +  0 4)
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In the second example we choose p =  1 for the AR(1) model which is defined by 

the equation (2.10). In this example,

It should be stressed that, different from the discrete ECF method, in the contin­

uous ECF method we do not need to choose the transformation variables, r ?s, since 

they are simply integrated out.

2.4 M onte Carlo Studies

Up to now, we have reviewed the DECF method proposed by Knight and Satchell 

(1996) and proposed the OLS-CECF method, the WLS-CECF method, and the GLS- 

CECF method. Although Knight and Satchell (1996) estimate an MA(1) model by 

using the DECF method, the step function is arbitrarily chosen and hence the weight 

is not necessarily the best. In fact, the multi-step procedure they propose has not 

been used to estimate a stationary time series model in practice.

In this section Monte Carlo studies are designed to compare the ECF estimator 

with the MLE for the MA(1) model and the AR(1) model, and with the CMLE for 

the Gaussian ARMA(1,1) model.

Hence,

A =
\ - p  1 J

and

B =

V  “ I  0  /
The estimating equation of p is,

n n
( V  +  2>p)y\ + pVn+i +  M l  +  P2) Y ,  yf = 2(2P2 +  !) 5Z ViVi+i- (3-11)

t = 2 i=l
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The first experiment involves 1,000 replications of generated data from an MA(1) 

model with cj> =  0.6, a2 =  1.0 and the number of observations set at T  = 100. To use 

the DECF proposed by Knight and Satchell (1996), one has to determine the value 

of p, the value of q, and the criterion to obtain the optimal r i , • • •, r q. In this Monte 

Carlo study we choose p to be 2 since the autocovariances are zero in an MA(1) for lags 

greater than one and q to be 5 to guarantee that the number of elements in the vector 

Vn and V  is larger than the number of parameters. In this multi-parameter case, 

we choose the criterion function in two ways, i.e., minimizing the determinant of the 

asymptotic covariance matrix and minimizing the trace of the asymptotic covariance 

matrix. Without further restriction on r ’s, unfortunately, the minimization problem 

for obtaining optimal r ’s has 15 dimensions and hence is numerically very expensive. 

To simplify the m atter and also for r ’s to be sufficiently fine and extended we have 

chosen r ’s in many ways. For example, we choose them in the following two ways.

—4r —2 T — T 0 2r

r  = — S t — T 0 r 3r (4-1)

- I t 0 r 2 r 4r

—6 r —3 r —r r 4r

r  = —5 r — 2 T 0 2 r 5r (4-2)

—4r — T r 3r 6r

where the behavior of r ’s is determined by only one parameter, i.e., r.

By plotting the criterion function against r , we find that two criterion functions 

with any one of two choices of r ’s are smooth and unimodal. This observation con­

vinces us that the global minimization can be obtained numerically in all the cases.

In Table 2.1 we report the results from all four procedures of the DECF method. 

In c(l), r ’s are chosen to be (4.1) and the criterion function to be the determinant 

of the asymptotic covariance. In c(2) r ’s are chosen to be (4.1) and the criterion
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function to be the trace of the asymptotic covariance. In c(3) r ’s are chosen to be 

(4.2) and the criterion function to be the determinant of the asymptotic covariance. 

In c(4), r ’s are chosen to be (4.2) and the criterion function to be the trace of the 

asymptotic covariance. The exact MLE is presented as well.

By allowing two parameters in r ’s, we choose r ’s to be,

(4.3)

or

- n  -  2 r 2 £11 - n —Ti +  r2 - n +  2 r2

r  = - 2t 2 - t 2 0 t2 2t 2

■

1 Is3 n  -  t2 n Tl +  t 2 Ti +  2t2

- n  -  3t2 ic1 - n —Ti +  r2 ~T\ +  3 t2

r  = s*CO1 ~ r2 0 r2 3 t 2

T\ -  3 r2 n  -  r2 n n  + t 2 n  + 3 r2

(4.4)

By plotting the criterion function against r i , r 2, we find that two criterion func­

tions with any one of two choices of r ’s are smooth and unimodal. This observation 

convinces us that the global minimization can be obtained numerically in all the cases.

In Table 2.2 we report the results from all four procedures of the DECF method. 

In c(l), r ’s are chosen to be (4.3) and the criterion function to be the determinant 

of the asymptotic covariance. In c(2) r ’s are chosen to be (4.3) and the criterion 

function to be the trace of the asymptotic covariance. In c(3) r ’s are chosen to be 

(4.4) and the criterion function to be the determinant of the asymptotic covariance. 

In c(4), r ’s are chosen to be (4.4) and the criterion function to be the trace of the 

asymptotic covariance. The exact MLE is presented as well.

A detailed examination of Table 2.1 and 2.2 reveals that the DECF estimates ap­

pear not to be much effected by the way of choosing r ’s, the criterion and how many 

parameters in r ’s. Furthermore, although the DECF estimates is a viable alternative 

to the MLE, the finite sample properties of the DECF estimates are dominated by 

those of the MLE. For instance, the variance of the DECF estimate of 4> is at least
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three times larger than tha t of the MLE of <j). With one parameter allowed in r ’s, the 

averages of the optimal r  axe 0.8, 0.59, 0.89, and 0.66 respectively. W ith two param­

eters allowed in r ’s, the averages of the optimal (r j , r 2) are (0.63,1.16), (0.63,0.45), 

(0.84,0.88), and (0.55,0.21) respectively. All these numbers are small. The finding 

is consistent with the theory that the CF contains the most information around the 

origin.

To use the CECF method proposed in Chapter 1, one needs to determine the 

value of p and the weight function. For all the cases we first choose p to be 2. Table

2.3 reports the results from the CECF method. In c(l), the OLS-CECF is used. In 

c(2), the WLS-CECF with the weight exp(—18r'r) is used. In c(3), the WLS-CECF 

with the weight exp(—rV ) is used. In c(4), the GLS-CECF with the optimal weight 

is used. The MLE is also reported for comparison.

From Table 2.3 it appears that both the OLS-CECF and the WLS-CECF are 

dominated by the GLS-CECF and MLE. The MLE performs better than the GLS. 

This finding suggests that p =  2 is not large enough for the moving blocks to retain 

the most information in the original sequence. Comparing Table 2.3 with Table 2.1 

and 2.2 we note that there is a clear improvement over the DECF by using the GLS- 

CECF in terms of the mean square error, although the approach of choosing r ’s 

discretely is proposed by Knight and Satchell (1996), Quandt and Ramsey (1978), 

Schmidt (1982), and Tran (1994).

In Table 2.4 we report the estimates of 0 by using the GLS-CECF method, how­

ever, the value of p has been increased to be 3,4, • • -, 10. As we argued before, as p 

gets larger and larger, the asymptotic variance of the GLS-CECF estimators is getting 

closer and closer to that of the MLE which achieves the Cramer-Rao lower bound. 

Therefore, we should expect a larger p works better. This is confirmed by Table 2.4. 

From Table 2.4, however, we note tha t the GLS-CECF method with a small p can
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work quit well. For example, when comparing the GLS-CECF estimates with p =  6 

and the MLE’s, we note that the GLS-CECF method performs as well as the MLE. 

The variance and the skewness of them are almost identical, but the GLS-CECF pro­

vides a mean and median which are slightly closer to the true parameter value. Also 

see Figure 2 .1.

The second experiment involves 1,000 replications of generated data from an 

MA(1) model with 0  =  0.6, a2 =  1.0 and the number of observations set at T  =  1,000. 

This experiment is designed to demonstrate that with a small p both the OLS-CECF 

and the WLS-CECF method work well when we have a large number of observations. 

Table 2.5 reports the estimates of <fi. In c(l), the OLS-CECF with p =  1 is used. 

In c(2), the WLS-CECF with the weight exp(—r 'r )  and p = 1 is used. In c(3), the 

OLS-CECF with p — 2 is used. In c(4), the WLS-CECF with the weight exp(—r'r) 

and p = 2 is used. In c(5), the OLS-CECF with p =  3 is used. In c(6 ), the WLS- 

CECF with the weight exp(—r'r)  and p =  3 is used. As we expect, with everything 

else being equal, the larger the value of p, the better the performance of the resulting 

estimates. Also the WLS-CECF performs slightly better than the OLS-CECF. Fur­

thermore, p = 2 is large enough to confirm the viability of the OLS-CECF and the 

WLS-CECF method.

The third experiment involves 1,000 replications of generated data from an AR(1) 

model with p =  0.6, a2 =  1.0 and the number of observation set at T  = 100. With 

p = 1 the GLS-CECF method is used to estimate the AR(1) model and compared 

with the maximum likelihood method presented in Section 2.2. See Table 2.6, Figure

2.2 and Figure 2.3. Interestingly, two approaches provide almost identical results. 

The results can be explained by the Markov property of the AR(1) model. Since the
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joint density of the AR(1) model for a length T  has the following property

f { x  i , x 2, - - - , x T) =  f ( x i ) n j =2f { x 3jlaTj-O,

it is not surprising that one-period-overlapping blocks can preserve all the information 

in the original sequence.

The fourth experiment involves 1,000 replications of generated data from an AR(1) 

model with p =  0.6, a2 =  1.0 and the number of observations set at T  =  1, 000. This 

experiment is designed to demonstrate that with a small p both the OLS-CECF and 

the WLS-CECF method work well when we have a large number of observations. 

Table 2.7 reports the ECF estimates of p. In c(l), the OLS-CECF with p = 1 is 

used. In c(2), the WLS-CECF with the weight exp (—r'r)  and p =  1 is used. In 

c(3), the OLS-CECF with p = 2 is used. In c(4), the WLS-CECF with the weight 

exp(—r 'r )  and p = 2 is used. Note that there is no clear improvement by increasing p 

from 1 to 2. The finding can still be explained by the Markov property of the AR(1) 

model. The advantage of using the WLS-CECF method is clear and the viability of 

the OLS-CECF and the WLS-CECF method is confirmed.

The fifth experiment involves 1,000 replications of generated data from a Gaussian 

ARM A(1,1) model with —0 =  p = 0.6, a2 =  1.0 and the number of observations set 

at T  =  100. It is easy to show that the inverse of $  for the ARMA(1,1) model has 

no closed form even for 0  =  p. Consequently, this experiment is designed to compare 

the performance of the GLS-CECF estimate with that of the CMLE presented in 

Section 2.2. Table 2.8 and Figure 2.4 report the results where in the GLS-CECF 

methods we choose p =  2, 3. Theoretically, the asymptotic variance of both the 

GLS-CECF estimate and the CMLE would converge to that of the MLE. In terms 

of the finite sample properties, from the Table 2.8, we note that the GLS-CECF 

estimate is clearly a viable alternative to the CMLE. For example, there appears a
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trade-off between the GLS-CECF estimates with p =  2 and the CMLE’s. The mean 

and median of the GLS-CECF estimates are closer to the true parameter value and 

the GLS-CECF estimates are less skewed than the CMLE’s while the variance of the 

GLS-CECF estimates is larger. However, comparing the GLS-CECF estimates with 

p =  3 to the CMLE’s, we note that the variance and mean square error are almost 

identical, whereas the GLS-CECF estimates clearly dominate the CMLE’s in terms of 

the other statistics. For instance, the GLS-CECF estimates with p =  3 have a mean 

and median which are closer to the true parameter value and show less skewness.

The findings can be explained as follows. If p is large enough, all the information 

in the original series. Theoretically, therefore, the GLS-CECF method results in 

an estimator which is asymptotically equivalent to the MLE. Furthermore, when 

T  —> oo both estimators can achieve the Cramer-Rao lower bound. However, p does 

not necessarily to be too large in practice. A much smaller p sometimes provides good 

finite sample properties. On the other hand, some initial conditions must be assumed 

in order to obtain the CMLE. If the initial condition has an error, it is carried over 

into all the following stages by the recursive formula such as (2.18). Of course, the 

effect of such an error will diminish for the stationary processes and thus the CMLE 

is asymptotically equivalent to the MLE. However, the effect may not be negligible 

for a small number of observations.

The sixth experiment involves 1,000 replications of generated data  from a Gaussian 

ARMA(1,1) model with —0 =  p =  0.6, a2 =  1.0 and the number of observations set 

at T  = 1000. This experiment is designed to demonstrate that with a small p both 

the OLS-CECF and the WLS-CECF method work well when we have a large number 

of observations. Table 2.9 reports the estimates of p. In c(l), the OLS-CECF with 

p =  1 is used. In c(2), the WLS-CECF with the weight exp(—r 'r )  and p =  1 is used. 

In c(3) the OLS-CECF with p =  2 is used. In c(4), the WLS-CECF with the weight

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



www.manaraa.com

35

exp(—r 'r )  and p =  2 is used. In c(5), the OLS-CECF with p =  3 is used. In c(6 ), 

the WLS-CECF with the weight exp(—r 'r)  and p =  3 is used. All cases confirm the 

viability of the OLS-CECF and the WLS-CECF method.

The seventh experiment involves 1,000 replications of generated data from a Gaus­

sian ARMA(1,1) model with — <f> =  p =  0.9, a2 =  1.0 and the number of observations 

set at T  =  100. This experiment is designed to compare the performance of the 

GLS-CECF method with that of the CMLE presented in Section 2.2. Table 2.10 and 

Figure 2.5 report the results where we choose p =  2, 3 for the GLS-CECF method. 

Compared with the sequences generated in the fifth experiment, the sequences in this 

experiment have much longer memory. Consequently, the finite sample properties of 

both the CMLE and GLS-CECF will be affected. From Table 2.8, however, we note 

that the effect on the ECF method is smaller than that on the CMLE. For example, 

the ECF estimates for both p =  2 and p =  3 perform better than the CMLE’s. The 

bias, the variance and the mean square error of the ECF estimates are smaller.

The advantages of using the ECF method are the following. Firstly, all the ECF 

methods presented in Section 2.3 do not require the calculation of the inverse of 

a T  x T  matrix. For most stationary processes, however, in order to use the full 

maximum likelihood estimation method, such inversion is needed but is infeasible 

in some situations. Secondly, implementation of the full maximum likelihood may 

require the closed form and boundness for the likelihood. No such requirement is 

needed for the DECF method, the OLS-CECF method, and the WLS-CECF method. 

Instead, the CF must have a tractable form. Such examples are listed in Chapter 1. 

Finally, even for the linear stationary processes such as the MA(1) model whose 

covariance matrix can be inverted analytically, the full maximum likelihood method 

is more computationally intensive than the GLS-CECF method. This is because the 

former method has to deal with a T  x T  matrix, while only a (p +  1) x (p -h 1) matrix
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is required in the latter case.
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Appendix A 

Proof of Theorem  2.3.1

For any p, define Xj =  (y,, • • •, y]+p)'.

Let (T2$(p+1)X(p+i) be the covariance matrix of Xj, then we have

/ • • • / |c„(r) — c (r) |2 exp( - a r ' r ) d r

= j  ■ ■ • J (Cn(r) -  c(r))(cn(r) -  c(r)) e x p ( -a r 'r )  dr

= J  ■ ■ • J  exp(»r'*j) -  e x p ( - y r '$ r )

r 1 n a2— exp(—ir 'xj)  — exp( —— r'<£r) exp(— ar'r) drin  j=l 2

ir 'x j )  exp(ir'xk) dr  (A.l)
n j=ik=iJ J 

2 t  r
——^ 2 J  ■ ■ ■ J  exp (ir'xj)  exp(—r 'A r)  dr

+  / - J exp(—r 'B r )  dr,

2 <» where .4 =  +  a x I  and B  =  <r2<& +  a x /  with I  as an identity matrix . Note that

the first part in the above equation is a constant with respect to 6. Let .4 =  C ~l.

Considering the characteristic function of a random variable N(0, \C),  we have

e x p ( - i * / C x , )  =  J  ■ ■ ■ | e x p ( i X j V )  { 2 „ ) ™ w \ c V I ? l / 2 ) ^ n d T - ( A ' 2 )

Thus the second part in (A.l) is,

/ - . / exp(ir'x j) exp(—r 'A r )  dr

=  (27r){p+l)/2|A | - h - {p+1)/2e x p ( - ^ x /A - 1x i )

e±I. . , _ i  ,  1=  t t^ I A I - * exp(—^ X j 'A ~ lXj). (A.3)

Similarly, for the third part in (A.l) we have

J  ' " J  exp(—r ,B r ) d r  = n E2~\B\~'2 . (A.4)
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Substituting (A.2), (A.3) and (A.4) into (A.l), we have

2 +i i n 1
In(0) =  constant  -  — |A |~2 ^ e x p ( - - x / A ~ lXj)  + 7r 2̂ 1 |S |_ 5. ■

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



www.manaraa.com

39

Appendix B 

P ro o f of Theorem 2.3.2

(yj+p\yj, • • •, Vj+p-1) ~  N  (fi(p)yj  +  • • • +  f q(p)yj+p-i ,  e 2g{pj)

implies

lo g /(y J+P|yj, • • •, V j + p - 1) =  log27r -  ^ log a 2 -  ^  log^(p) -  2o-2~ (p) x 'jA x v

where A  is defined in Theorem (2.3.2). If we take the derivative of the log conditional 

density function with respect to the parameters, we have

d io g /(y J+i|yJ,- - - ,y J+P-i)   i_  1
da2 ~  2a 2 2a*g{p) ] J’

and

5 log/(yj+i|yj,• • • ,yj+p-i) _  gM  , y*(p) l D _
dpk ~  2 „ (p )+ 2<rV(p) '  J 2o*g(p)X’ti tX’ '

where gk and Bk with k =  1 , • • • , /  + m are defined in Theorem (2.3.2). Then the 

optimal weight function could be

«v*(r) =  ( ± r ' f - - J e x p ( - i r ' x , ) ( - ±  + l i ^ x ' 1A X,')dyr -dyJkp

= ~ ^ r l ) ■ • / ' ' ' ! ^ ( - i r ' x ^ A X i

dyj • • • dyJ+p. (B.l)

Consider

( ^ ) p + l  J  • • • J  exp{—ir'xj)x'3 Ax., dy} ■ • • dyJ+p

= ( ^ : ) P+I /  "  ' /  exP{—i r ' x j )x 'jMAM'xj  dyj • • • dyj+p

—i8'z)z'h.zdzi ■ ■ ■ dz2

1 r r p+l P+1 
=  (^ ~ )P+1 /  ‘ - • /  exP(“  S  ” ***) 5Z xk4  d z i ■■■ dzp + 1

J  J k=  1 Jk=l
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=  (^“ )P+l /  exp(~is lzi)XlZidzi J J  { f  exp(- iskzk) dzk|  H-----

+ ( ^ - ) P+l / exP (-* sP+lziH-i)Ap+12p+1c/2p+i I I  { [ e x p ( - i s kzk) dzk\
zir J kjtP+1 L J

=  - A ^ ' V ^ s 2) • ■■5(sp+l) --------- Ap+lS(sl ) • • •5 (sp)J"(5p+l);

where M  and A are defined in Theorem (2.3.2), z  =  M'Xj  and s  =  M'r.  Hence, 

( £ .1) becomes

”v ( r )  =  - 2j 2‘5(r l ) ' " <S(rP+‘> (B-2>

i — r [A1i" ( s 1)i(s2) ■ • d ( 0  +  • • • + Ap+l<S(si) ■ •<S(S„)<)"(Sp+,)],
2 a4g(p)

and

=  ^ r l I - - f e M - i r ' x 4 - ^ + 2 0 L x '’ A x i

1

2g{p) 2a2g2{p)

j B kXj^J dyj • • • dyj+p
2a2g(p)

=  - § ^ } 5(r ‘) " ' S(rP+') (B-3)

[Ali" ( s ‘)(!(s2) ■ • -<5(sP+1) +  • • + A',+,<S(s1) • - •<S(sI,)<S"(sp-|-1)|
2 a2g2{p)

-I— [A‘<S"(4)<S(f2) ■ ■ - < 5 ( 0  +  • ■ • +  0 ( 4 )  • ■ - < 5 ( 0 ( 0 ] .2a2g{p)

where t k =  Hkr  for k =  1, ••• , /  +  m.

Therefore, based on the optimal weight functions, the estimating equations are

0  =  J  • • •  J  w ^ i^ C n i r f d r

- / - / { -  h i(r l)  ■ ■ ■ *(rP+I) -  2s w i " ' (sl W s 2 ) ' ' '  *(sP+l)

+  . . .  +  Ap+l£(sl ) • • •5(sp)<5"(sp+1)]}c„(r) dr

-  - 2^ " (0) -  I - I  [Al*''<sl>5<s2> ■ • •
+ . . .  +  AP+^Cs1) • • •5(sP)5"(sp+1) |c ri(r) dr

2 a2 2cr4g(p)
x l d2cn(Ms)  | [ xv+ld2cn(Ms)

ds l2 s=0 dsP+l2 s=0 .
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1 1 £  A '« M 'x , ) („ ) 2 + • • • +

2(J2 2o4g(p)

where

2a 2 2o*g{p) n fr[

1 1 P(p), (B.4)

P l P )  =  ^  L  A'dM 'x,),,,)2 +  - ■ ■ +  Ap+l((A/'xj),p+,))'
"7=.

and

0 =  J  • •  • f  wpk(r)cn(r)dr  

-  / - / {
[A1<?,,( s 1)<y(s2) • • -<S(sp+1) +  • • • +  A»,+ l<5(si ) • • -5 (SP ) J 'V + l)]

9 {p)

1-7 -M S ' ' ( t l )S [ t l )  • - < 5 ( 0  + ■■■ + \ F l6(tl) ■ ■ • i( i; ) 5 " ( i r 1)]}c„(r) dr2 a2g(p)
9k(p) +  _ Jk iP ) p {p) _  1 Q (p)f (B>5)
2g(p) 2 <r2g2(p) 2a2g(p)

where

< 5 * (r t  =  -  +  • • • +  A r ' ( ( / 4 x ' ) „ , +11) 2),
n  J = l

with k =  1, • • •, I + m. If concentrating out cr2 in (B.4) and (B.5), we have (3.8).
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TRUE VALUES OF PARAMETERS <f> =  0.6 a 2 =  1

NO. OF REPLICATIONS=1,000 NO. OF OBSERVATIONS=100

INITIAL VALUES OF VECTORS r

- 0.10 -0.05 - 0.01 0.03 0.08

-0.09 -0.04 0.00 0.04 0.09

-0.08 -0.03 0.01 0.05 0.10

INITIAL VALUE OF r  0.5

(j> = 0.6 a2 = 1.0

c(l) c(2 ) o(3) c(4) MLE 0(1) c(2) o(3) c(4) MLE

MEAN .5963 .5913 .5838 .5814 .6032 .9806 .9753 .9945 .9829 .9922

MED .5730 .5388 .5456 .5243 .6026 .9728 .9541 1.006 .9605 .9838

MIN .2739 .1876 .2163 .0371 .3472 .4526 .6086 .4358 .6125 .6411

MAX 1.00 1.00 1.00 1.00 .8758 1.455 1.528 1.53 1.569 1.466

SKEW .6886 .6115 .5344 .2771 .0371 -.142 .0045 .4733 .4108 .2940

KURT 2.62 2.54 2.41 2.29 3.13 2.81 2.73 2.79 2.67 3.01

VAR .043 .0487 .0486 .0667 .007 .0406 .0364 .0507 .0454 .0196

BIAS .0037 .0087 .0162 .0186 .0032 .0394 .0247 .0055 .0171 .0078

MSE .043 .0487 .0489 .0671 .007 .0421 .037 .0507 .0457 .0197

Table 2.1: Monte Carlo Comparison of DECF and MLE for an 
MA(1) Model When r ’s Depends on Only One Variable
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TRUE VALUES OF PARAMETERS <t> =  0.6 <r2 =  1

NO. OF REPLICATIONS=1,000 NO. OF OBSERVATIONS=100

INITIAL VALUES OF VECTORS r

- 0 . 1 0 - 0 . 0 5 - 0 . 0 1 0 .0 3 0 .0 8

- 0 . 0 9 - 0 . 0 4 0 .0 0 0 .0 4 0 .0 9

- 0 . 0 8 - 0 . 0 3 0 .0 1 0 .0 5 0 .1 0

INITIAL VALUES OF n  AND r2: 0.5 0.5

oII a 2 =  1 .0

c ( l ) c ( 2 ) c (3 ) c (4 ) MLE c ( l ) c (2 ) c (3 ) c (4 ) MLE

MEAN .5 9 6 1 .5 8 5 8 .5 9 0 0 .5 9 2 0 .6 0 3 2 .9 7 7 6 .9 8 6 9 .9 9 6 3 .9 8 5 0 .9 9 2 2

MED .5 4 6 6 .5 6 7 2 .5 8 2 4 .5736 .6 0 2 6 .9 4 0 9 1.000 .9 9 1 9 .9 7 1 4 .9 8 3 8

MIN .2 4 0 1 .2 2 3 3 .2 2 8 3 .3206 .3 4 7 2 .5 9 1 9 .5 7 7 5 .4 3 1 3 .5 9 1 8 .6 4 1 1

MAX 1 .0 0 1 .0 0 1 .0 0 1 .00 .8 7 5 8 1 .5 0 2 1 .3 8 9 1 .4 3 8 1 .3 7 5 1 .4 6 6

SKEW .5 8 5 2 .6 2 6 2 .6 0 4 7 .7664 .0 3 7 1 .4 1 1 6 - .1 9 2 .0 3 4 2 .2 5 8 6 .2 9 4 0

KURT 2 .5 5 2 .3 7 2 .9 4 3 .21 3 .1 3 2 .7 7 2 .6 2 2 .7 5 2 .6 3 3 .0 1

VAR .0 4 0 9 6 .0 3 0 8 .0 5 0 0 .0271 .0 0 7 .0 4 0 9 .0 2 6 9 .0 4 4 0 .0 2 5 2 .0 1 9 6

BIAS .0 0 3 9 .0 1 4 2 .0 1 0 0 .0080 .0 0 3 2 .0 2 2 4 .0 1 3 1 .0 0 3 7 .0 1 5 0 .0 0 7 8

MSE .0 4 1 0 0 .0 3 1 0 .0 5 0 1 .0272 .0 0 7 .0 4 1 5 .0 2 7 1 .0 4 4 0 .0 2 5 4 .0 1 9 7

Table 2.2: Monte Carlo Comparison of DECF and MLE for an 
MA(1) Model When r ’s Depends on Two Variables
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TRUE VALUES OF PARAMETERS 0 =  0.6 <r2 =  1

NO. OF REPLICATIONS=1,000 NO. OF OBSERVATIONS=iOO

INITIAL VALUES OF 0 AND a 2: 0.3 0.7

0  =  0.6

c ( l ) c(2) c (3 ) c(4) MLE

MEAN .6479 .5981 .6475 .6269 .6032

MED .6102 .5325 .6076 .5960 .6026

MIN .0281 .1588 .1508 .2382 .3472

MAX 1.000 1.000 1.000 1.000 .8758

SKEWNESS .3798 .9556 .4070 .7960 .0371

KURTOSIS 2.917 2.749 2.134 3.244 3.126

VAR .0566 .04258 .0456 .026 .007

BIAS .0479 .0019 .0475 .0269 .0032

MSE .0589 .04259 .0479 .0268 .0070

Table 2.3: Monte Carlo Comparison of CECF and MLE for an MA(1) model
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TRUE VALUES OF PARAMETERS d> =  0.6 a 2 =  1

NO. OF REPLICATIONS=1,000 NO. OF OBSERVATIONS=100

INITIAL VALUES OF <t> AND a 2: 0.3 0.7

<f> = 0.6

p=3 p=4 p=5 p= 6 p=7 P—8 p=9 p=10 MLE

MEAN .6133 .6061 .6037 .6024 .6028 .6025 .6026 .6023 .6032

MED .6011 .5992 .6004 .6009 .6018 .6015 .6006 .6016 .6026

MIN .3138 .3446 .3401 .3493 .338 .3441 .3274 .323 .3472

MAX 1.000 1.000 1.000 .8861 .943 .9055 .9002 .9415 .8757

SKEW .8491 .5473 .3802 .0398 .0253 -.012 .0054 .0693 .0371

KURT 4.211 4.183 3.960 3.148 3.240 3.054 3.073 3.284 3.126

VAR .015 .010 .0085 .007 .0075 .007 .007 .0076 .007

BIAS .0133 .0061 .0037 .0024 .0028 .0025 .0026 .0023 .0032

MSE .015 .010 .0085 .007 .0075 .007 .007 .0076 .0070

Table 2.4: Monte Carlo Comparison of GLS-CECF and MLE for an MA(1) Model
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TRUE VALUES OF PARAMETERS (f> =  0.6 a 2 =  1

NO. OF REPLICATIONS=1,000 NO. OF OBSERVATIONS=1,000

0  =  0.6

c(l) c(2) c(3) c(4) c(5) c(6 )

MEAN .6350 .6200 .6128 .6095 .6068 .6072

MED .6061 .6045 .6028 .6030 .5994 .6014

MIN .3404 .3907 .3746 .4090 .4104 .4204

MAX 1.000 1.000 1.000 1.000 .9900 1.000

SKEWNESS .9929 1.243 .9365 .7593 .6927 .6765

KURTOSIS 3.637 5.551 5.329 4.846 4.864 4.971

VAR .0211 .0101 .0078 .0049 .0049 .0039

BIAS .035 .020 .0128 .0095 .0068 .0072

MSE .0223 .0105 .0080 .0050 .0049 .0040

Table 2.5: Monte Carlo Comparison of OLS-CECF and WLS-CECF 
with Different Values of p for an MA(1) Model
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TRUE VALUES OF PARAMETERS p  =  0.6 a 2 =  1

NO. OF REPLICATIONS=1,000 NO. OF OBSERVATIONS=100

INITIAL VALUES OF p  AND a 2: 0.3 0.7

p = 0.6

or“*HIIMb

GLS-CECF MLE GLS-CECF MLE

MEAN .5907 .5906 .9924 .9923

MED .5957 .5982 .9850 .9838

MIN .2208 .2200 .6425 .6410

MAX .7878 .7797 1.443 1.516

SKEWNESS -.4960 -.5190 .2953 .3111

KURTOSIS 3.517 3.544 3.021 3.076

VAR .0063 .0063 .0199 .0198

BIAS .0093 .0094 .0076 .0077

MSE .0064 .0064 .01999 .01991

Table 2.6: Monte Carlo Comparison of GLS-CECF and MLE for an AR(1) Model
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TRUE VALUES OF PARAMETERS p  =  0.6 <r2 =  1

NO. OF REPLICATIONS=1,000 NO. OF OBSERVATIONS=1,000

p = 0.6

c(l) c(2) c(3) c(4)

MEAN .5996 .5997 .5998 .6002

MED .6018 .6008 .6025 .6010

MIN .4465 .4693 .4300 .4679

MAX .7051 .6841 .7060 .6885

SKEWNESS -.3101 -.2246 -.3566 -.1916

KURTOSIS 3.083 3.196 3.021 3.089

VAR .00149 .00092 .00162 .0010

BIAS .0004 .0003 .0002 .0002

MSE .00149 .00092 .00162 .0010

Table 2.7: Monte Carlo Comparison of OLS-CECF and WLS-CECF 
with Different Values of p for an AR(1) Model
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TRUE VALUES OF PARAMETERS -<f> =  p  =  0.6 a 2 =  1

NO. OF REPLICATIONS=1,000 NO. OF OBSERVATIONS=100

p = 0.6

p = 2 p = 3 CMLE

MEAN .5972 .6000 .5895

MED .5973 .6000 .5909

MIN .3785 .3991 .3491

MAX .7878 .7681 .7351

SKEWNESS -.0906 -.0672 -.2132

KURTOSIS 2.991 3.056 3.115

VAR .003767 .003060 .003035

BIAS .0028 .0000 .0105

MSE .003775 .003060 .003145

Table 2.8: Monte Carlo Comparison of GLS-CECF and MLE for a 
Gaussian ARMA(1, 1) Model
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TRUE VALUES OF PARAMETERS - 0  =  p  =  0.6 a 2 =  1

NO. OF REPLICATIONS=1,000 NO. OF OBSERVATIONS=1000

COoII

c (l) c(2)__ c(3) c(4) c(5) c(6 )

MEAN .6007 .6010 .6012 .6014 .6017 .6019

MED .6013 .6007 .6018 .6008 .6017 .6019

MIN .4488 .4841 .4671 .4797 .4777 .4734

MAX .7112 .6902 .7162 .7046 .6993 .7093

SKEWNESS -.1993 -.0829 -.1067 -.0844 -.0802 -.1047

KURTOSIS 3.182 3.003 3.235 2.992 3.163 3.032

VAR .0014 .0010 .0011 .0012 .0010 .0013

BIAS .0007 .0010 .0012 .0014 .0017 .0019

MSE .0014 .0010 .0011 .0012 .0010 .0013

Table 2.9: Monte Carlo Comparison of OLS-CECF and WLS-CECF 
with Different Values of p for a Gaussian ARM A(1,1) 
Model
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TRUE VALUES OF PARAMETERS - 0  =  p  =  0.9 a 2 =  1

NO. OF REPLICATIONS=1,000 NO. OF OBSERVATIONS=100

p =  0.9

p =  2 p =  3 CMLE

MEAN .8846 .8881 .8512

MED .8904 .8949 .8601

MIN .6374 .6569 .6015

MAX .9739 .9820 .9690

SKEWNESS -.9348 -.9060 -.7173

KURTOSIS 4.307 4.186 3.577

VAR .002333 .002315 .003202

BIAS .0154 .0119 .0488

MSE .002571 .002440 .005583

Table 2.10: Monte Carlo Comparison of GLS-CECF and MLE for a 
Gaussian ARMA(1.1) Model
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Figure 2.1: Density Function of Estimator of 0 in an MA(1) Model
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Figure 2.2: Density Function of Estimator of p in an AR(1) Model
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Figure 2.3: Density Function of Estimator of a2 in an AR(1) Model
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Figure 2.4: Density Function of Estimator of p in a Gaussian ARMA(1,1) Model
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Figure 2.5: Density Function of Estimator of p in a Gaussian ARMA(1,1) Model
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Chapter 3

ESTIMATION OF THE STOCHASTIC VOLATILITY  
MODEL VIA EMPIRICAL CHARACTERISTIC

FUNCTION

3.1 Introduction

Modeling the volatility of financial and macroeconomic time series has attracted a 

lot of attention since the introduction of autoregressive conditional heteroskedasticity 

(ARCH) models (Engle (1982)). A feature of the ARCH type model is that the con­

ditional variance is driven by the past observable variables. As an alternative setup 

to the ARCH-type model, the Stochastic Volatility (SV) model is supposed to de­

scribe the financial time series better than the ARCH-type model, since it essentially 

involves two noise processes. This added dimension makes the model more flexible, 

for example, the SV model can explain not only volatility clustering but also leverage 

effects. For further discussion, see Ghysels, Harvey, and Renault (1996) . Unfortu­

nately, the density function for the SV model has no closed form and hence neither 

does the likelihood function, even for the simplest version of the SV model. It is a 

consequence of this th a t direct maximum-likelihood estimation is impossible. There­

fore, alternative estimation methods to the maximum likelihood have been proposed 

to estimate the SV models, which we discuss next.

Melino and Turnbull (1990) use generalized method of moments (GMM) for the
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discrete SV model. A more efficient GMM is proposed by Andersen and Sorensen

(1993) . For the continuous time SV model, a GMM approach is developed by Hansen 

and Scheinkman (1995). The idea is to match a finite number of sample moments 

and theoretical moments. Alternatively, the quasi maximum likelihood (QML) ap­

proach is suggested by Nelson (1988), Ruiz (1994) and Harvey, Ruiz and Shephard

(1994). The main idea is to treat non Gaussian disturbances as if they are normal and 

then maximize the quasi likelihood function. Often estimation methods involve the 

whole family of simulation based methods, including simulated MM/GMM proposed 

by Duffie and Singleton (1993), indirect inference proposed by Gourieroux, Monfort 

and Renault (1993), simulated maximum likelihood (SML) proposed by Danielsson 

(1994b), and Markov Chain Monte Carlo (MCMC) proposed by Jacquier, Poison and 

Rossi (1994). The SV model has become a central model to describe financial time 

series and to compare the relative merits of estimation procedures.

Although most of these methods are consistent under appropriate regularity con­

ditions, in general they are not efficient. For example, by using only a finite number 

of moment conditions, MM/GMM may ignore important information contained in 

the realizations. The QML approach simply approximates the true information. Not 

surprisingly, such an approximation could lose substantial amounts of information. 

The simulation based methods decrease the efficiency by introducing an extra ran­

dom error. This raises the question as to whether we can find a methodology with 

efficiency equivalent to maximum likelihood.

The present chapter uses such an alternative approach to estimate the stochastic 

volatility model -  via the empirical characteristic function. The rationale for using 

the characteristic function is that there is a one to one correspondence between the 

characteristic function and the distribution function. Consequently, the empirical 

characteristic function (ECF) should contain the same amount of information as the
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empirical distribution function (EDF). Theoretically, therefore, inference based on the 

characteristic function should perform as well as inference based on the likelihood. 

Moreover, by using the characteristic function, we can overcome the difficulties arising 

from ignorance of the true density function or the true likelihood function. This 

chapter is organized as follows. The next section introduces a canonical SV model 

and explains why the model is difficult to estimate. Section 3.3 presents a discussion 

on ECF estimation for the SV model; the characteristic function of the SV' model 

is obtained as well. Section 3.4 discusses the implementation of the ECF method as 

well as a Monte Carlo study and an empirical application. All proofs are collected in 

the Appendix.

3.2 The Model

The formulation of the discrete time stochastic volatility model is similar to that of the 

ARCH-type models. That is, the conditional variance is directly modeled. However, 

in contrast to the ARCH-type models, the stochastic volatility model allows a random 

component in the transition equation. By doing so, the model can explain why large 

changes can follow stable periods. The model is of the form,

x t =crtet, t = 1, 2, •••,7 ’, (2 .1)

where of is the conditional variance based on the information at the end of time t, 

and et is a series of i.i.d. random disturbances which are assumed to be a standard 

normal distribution. We define

at =  exp(0.5/it) (2.2)

and assume ht follows a Gaussian AR(1) process, i.e.,

ht = \  + ah t-1 +  vt, vt ~  iidN(0, a 2), (2.3)
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where 0 =  (a, A, o2) are the unknown parameters. It is well-known that if |a | < 1, 

this process is invertible and stationary. Heuristically, we can say that the conditional 

variance depends on past conditional variance and a random component. When the 

effect of the past conditional variance is strong, volatility clustering will appear in 

the series. However, if the random innovation is not dominated, it can bring a large 

change into a stable period and can smooth large booms and crashes as well. W ithout 

including the random component, the transition equation is deterministic and the 

model exhibits time-varying but deterministic volatility. Finally, we assume et and vt 

are independent, we shall return to this assumption later.

Some statistical properties of x t are determined by ht since x t is a simple function 

of ht. For example, ht is stationary for |a | < 1, thus x t is stationary as well. Further­

more, x t is a martingale difference because ht is a martingale difference; see Ghvsels, 

Harvey and Renault (1996). We also note that x t has finite moments of all orders 

and in particular the second and fourth moments are given by E(x^) =  e x p (^ ^ ry ) ,  

and E{x\)  =  3 e x p (-^ j) . The kurtosis of x t is therefore 3 exp(yf^2), so x t exhibits 

more kurtosis than a constant variance normal model. Furthermore, Harvey (1993) 

derives the moments of powers of the absolute value of x t,

Since x t is a non-linear function of an AR(1) process, however, the process is diffi­

cult to work with. For example, there is no closed form expression for the character­

istic function of x t. Observing that the dependence of x t is completely characterized 

by the dependence of ht, we define yt to be the logarithm of x f. Then we have

(2.4)

and

V ar\xt\c =  2cj

Vt =  log erf -I- log ef =  ht +  et, t =  1, 2, • • •, T, (2 .6 )
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where et = log e% is the logarithm of the chi square random variable with 1 degree of 

freedom. Hence, the new process yt still depends on the AR(1) process ht, but in a 

linear form. Since the process ht contains all the parameters of interest, yt loses no 

information from the estimation point of view, the only loss of information being the 

sign of et which for a symmetric distribution, uncorrelated in et and vt, contributes 

nothing to volatility estimation. This is w'hy most of the estimation procedures in 

the literature axe based on yt, not x t.

Unfortunately, neither yt nor x t has a closed form expression for the likelihood 

function. This property makes the estimation based on the likelihood extremely 

difficult. However, from (2.6) we know that yt is the convolution of an AR(1) process 

and an iid logarithmic xfi) sequence, and hence there is a closed form expression for 

the characteristic function of yt which we will derive in the next section. Since the CF 

contains the same amount of information as the distribution function, the model is 

fully and uniquely parameterized by the CF. Therefore, inference based on the ECF 

can achieve efficiency.

3.3 ECF Estimation

The model we are going to estimate via the ECF is the one defined by (2.6) since 

we can derive the closed form of the characteristic function. In order to use the 

ECF method, of course, we need to find the expression of the joint characteristic 

function. First, the characteristic function for the logarithm of the xfi) distribution is 

given in Theorem 3.3.1. And then the joint characteristic function for yt, • • •, yt+k-i 

is obtained in Theorem 3.3.2.

T h eo re m  3.3.1 Suppose et is the logarithm of the distribution. The character­
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istic function of et, c(r), is

where i is the imaginary number and defined by %/—1.

Proof: See Appendix A.

T h eorem  3.3 .2  Suppose {yt}J=l is defined by (2.6). The joint characteristic function 

° f  Vt, Vt+\, • • •, Ut+k-i is

c{r\, • • •, Tfc, 0 ) =  e x p [ i - j— Y .  +  »A E  1 ~  ttj~lr^ i T ^2
1 “ j = L  J = 2  1 “  -  j = l  1 “

B E ^ S ) 2*2]11̂ 1 +  ir j)2 - g - .  r  (3.2)
z 1=2 j = l  1 *■2 >

Proof: See Appendix B.

Using the joint characteristic function we can easily obtain the joint cumulant gen­

erating function and consequently the autocorreltion function. The autocorrelation 

function of {yt}]= i is given in the following theorem.

T h eorem  3.3.3 Suppose {yt}J= i is defined by (2.6). The autocorrelation function of 

{Vt}J=i is,

Pk o-2 | r"(o.5) /r'(o.5)\2’ ^ •••. (3.3)
1-q 2 r(o.5) 1. r(o.5) >

P ro o f: See Appendix C.

The yt process defined by (2.6) is the sum of an AR(1) and white noise, it is well- 

known that this process has the similar dynamic behavior as the Gaussian ARM A (1,1) 

(hence we still call it ARMA(1,1)). This is confirmed by the formula in (3.3). Fur­

thermore, the p mixing condition of the SV model is ensured by (3.3).

In order to use the ECF method to estimate the SV model (2.6), we have to choose 

a value for p. Although our process is not Markovian, being an ARMA(1,1), we shall
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choose p =  1 at first. Our reason relates to the results of a Monte Carlo study in 

Chapter 2 where the ECF method is used to estimate a linear ARMA( 1,1) process 

and we found that p =  1 works quite well (see Table 2.9 in Chapter 2). For the SV 

model (2.6) we note tha t with p =  1,

c (n , r2, 0) =  exp[t‘A^ - *  T-2 -  i ( n  +  ar2)2 --° v -  \r \a l]
1 -  a  2 1 — a;2 2

2iri+,r2, (3.4)
r{i + iri)r(± + ir2)nirt+in

r 2( | )

and
1 n

Cn{ri,r2) =  — exp(zr1t/j + ir2yj+l). (3.5)
n j=i

Defining Rec(ri, r2, 9), ReCn(r\,r2), /m c ( r1, r 2,0 ) and Im c n (r i ,r2) to be the real 

and imaginary parts of c{ri,r2) and cn( r i , r 2) respectively, we have,

1 n
Re Cn(rl} r2) =  -  cos(riyj +  r2yj+l), (3.6)

and
1 n

Im cn(ri, r2) =  -  szn(r iyj +  r2l/j+i)- (3-7)
n j=i

As we mentioned before, a clear advantage of choosing the transformation variable 

continuously is that we do not need to choose q. Furthermore, since the same Monte 

Carlo study conducted in Chapter 2 shows that the continuous ECF method works 

better than the discrete ECF method, we use the continuous ECF method to estimate 

the SV model. However, the optimal weight function in the continuous ECF method 

is not readily obtained because the conditional score function has no closed form 

expression for the SV model. Instead the exponential weight is considered. The 

exponential function is chosen because it puts more weight on the points around the 

origin, consistent with the recognition that the CF contains the most information 

around the origin. Therefore, the procedure is to choose (d, a2, A) to minimize,

S I {Re c (n , r2, 9) -  £ £ ”=i cos^'ny, +  ir2yj+l))2 (3.8)
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+ ( / m c ( r l> r2, 0 )  -  £ £ ”=l sin{iriyj  +  zr2yJ+1))2 exp(-czr? -  a r | )  d r ^ ,

where c (r l5 c2) is given by (3.4) and a is an arbitrary positive constant which is chosen 

to be 32.5 in the Monte Carlo studies and the application.

We could check that the appropriate regularity conditions given in Chapter 1

hold for the weight function. Therefore, the resulting estimators are consistent and 

asymptotically normal. The asymptotic covariance matrix of the estimators is given 

below,

In appendix D, the expression of E2 is given as well as the process of calculating it.

We should note that the joint characteristic function of yt is of different functional 

form if vt and et are correlated. However, the ECF method can be still used in the 

same way as the uncorrelated case. Of course, the the joint characteristic function of 

yt in the correlated case is more difficult.

3.4 Implementation, Simulation and Application

3.4.1 Im p le m e n ta tio n

The implementation of the ECF method essentially requires minimizing (3.8), and 

thus involves double integrals. Unfortunately, no analytical solutions for either the 

double integrals or the optimization axe available. Consequently, we will numerically 

evaluate the multiple integral (3.8), followed by numerical minimization of (3.8) with 

respect to 0. The numerical solutions are the desired estimators.

A 40-point Gauss-Kronod algorithm is used to approximate the two dimensional 

integrations in (3.8). Since there is no analytical expression for the derivative of the

d R ec(r;0 )  d R ec (r ;0 ) p d i m c(r; 0) d im e
„  --t  I o nd0 dOT d0 di

dRec(r- ,0 )dRec(r;0) d lm c (r ;0 )  d in
80 d(F  +  80
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objective functions, a quasi-Newton method is used to find the minimum. The starting 

point in the optimization is chosen to be the quasi-maximum likelihood estimates 

proposed by Ruiz (1994).1 All computations were done in double precision.

By using the implementation procedure, we examine the performance of the ECF 

method in the estimation of a SV model in a Monte Carlo study. We also apply the 

procedure to a real dataset.

3.4 .2  M onte C arlo S im u lation

The Monte Carlo study is designed to check the viability of the ECF method. We 

choose the same parameter setting as Jacquier, Poison and Rossi (1994) did in one of 

their Monte Carlo studies, that is, a  =  0.9, a =  0.3629, A =  —0.736. The number of 

observations set at T  =  2,000 and the number of replications set at 500.

Table 3.1 reports the simulation results. The table shows the mean, the minimum, 

the maximum, the mean square error (MSE) and the root mean square error (RMSE) 

for all three estimators, and serves to illustrate that the ECF method works well.

In Table 3.2 we duplicate the results in Table 9 of Jacquier, Poison and Rossi

(1994), where the same experimental design is used but the three alternative meth­

ods are employed, i.e., the GMM, QML and MCMC. We also report the simulation 

results provided by Danielsson (1994b) based on the SML for the same experiment. 

Of course our random numbers may not be the same as those generated by Jacquier, 

Poison and Rossi (1994) and by Danielsson (1994). However, we believe that the ex­

periments should be compaxable. The finite sample performance of the ECF method 

is better than that of the QML and GMM method, while the MCMC and SML 

method outperform the ECF method. This can be accounted for by the use of the 

non-optimal weight function. How to choose a better weight function is of future

1 Actually in the empirical application many other initial point have been used.
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interest. Nevertheless, the ECF method provides a viable alternative.

3 .4 .3  A p p lication  

D a ta

The data  we used was supplied by George Tauchen2 and is the same as that used by 

Danielsson (1994b). It consists of eight years (2,022 observations) of daily geometric 

returns (defined as 100(logP£+1 — logP£)) for the S&P 500 index covering period 

1980-1987. The data are adjusted as detailed in Danielsson (1994b).

E m pirical R esu lts

The empirical results are reported in Table 3.3, along with the MCMC estimates 

obtained by Jacquier, Poison and Rossi (1994) using the same data set. To obtain 

the ECF estimates the initial values are chosen to be the QML estimates, as well 

as the MCMC estimates and other starting values. This serves to show that the 

global minimum is achieved. From Table 3.3, we note that the ECF estimates are 

very different from the MCMC estimates. For example, a EcF is close to 0 while the 

g-mcmc is close to 1; cr%CF is 20 times larger than &\{CMC. Since the empirical results 

are so different, the comparison of the goodness of fit is of particular interest.

To compare the goodness of fit, we simulate two sequences by using the ECF 

estimates and the MCMC estimates. In Figure 3.1, we plot the empirical density of 

the real data and densities of two simulated data sets. Figure 3.1 demonstrates that 

the ECF estimates give a better fit than the MCMC estimates. The Kolmogorov- 

Smirnov test is performed to test for the goodness of fit. The results are reported 

in Table 3.4. For the ECF the Kolmogorov-Smirnov test statistic (0.0257) is much 

smaller and the p-value (0.498) is very large while the p-value for the MCMC is 0. The

2We would like to thank Tauchen for supplying the dataset.
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MCMC has been rejected at any significant level and the ECF can not be rejected. 

Therefore, the ECF method is significantly better than the MCMC in the sense of 

fitting the steady state distribution. This result is very intuitive because the ECF 

method basically matches all the moments and hence the density.

We next discuss the implication of our results. Firstly, a much smaller a  implies 

smaller volatility clustering, that is less persistence. Consequently, there is not much 

dependence for the variances between two consecutive trading days. This contrasts 

with the implication of large a. Secondly, a much larger a 2 suggests that a large 

change can possibly follow a stable period and a stable period can follow an unstable 

period. This happens because with the large variance the random innovation vt 

may dominate the deterministic term and hence bring in a significant change. Thus 

whilst the estimated models have similar means their persistence characteristics seem 

dramatically different. Evaluating our objective function, given by (3.8), for the two 

sets of converged estimates in Table 3.3 we find that the ECF estimates result in a 

value of 1.6354 x 10-7  while the MCMC estimates give 9.73823 x 10-5. The latter is 

nearly 600 times larger than the former!

Finally we should stress that we have also chosen larger values of p for the ECF 

method. Theoretically, we know that with a larger p the moving blocks preserve more 

information and hence the ECF method can be more efficient. On the other hand, 

however, a larger p is computationally more time-consuming since higher dimensional 

numerical integrations are involved. In Table 3.5, we report the ECF estimates for 

p  =  2 ,3 ,4 ,5  where we fit the SV model to the same data set.3 From this table we

note that the empirical results remain almost unchanged for different values of p and

3 Of course higher dimensional integrations are required to be approximated for larger values of 
p.  A DCUHRE algorithm proposed by Bemsten, Espelid and Genz (1993) is used to approximate 
such integrations.
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are very close to those for p =  1.
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Appendix A 

P ro o f of Theorem 3.3.1

According to the definition of the characteristic function, and with e£ =  log(x^)), we

have

c(r) =  £[exp(ire£)]

=  £ [(exp(et))*r]

= ■E[(exp(log(xf1)))),r]

= £[(x?i, )ir]

=  J  x tTj { x ) d x  

— f  x ir- - - -  — j=x~l/2e~x/2 dx
J r ( l / 2 ) v / 2

=  [  x i r ~ * — —  - e~x/2 dx
J T ( 1 / 2 ) V 2
r ^ U ^ i r ) 2 l ± 2 1L

r ( j )2 
T (| +  ir)2ir

r ( i )  ’

where f ( x )  is the density function of xfi) and is given by

f (x )  = ----- -— j=x~ll2e~xl2. I
V{l/2)y/2

(A.l)
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Appendix B 

Proof of Theorem  3.3.2

Since yt is a convolution of a Gaussian AR(1) process and an iid sequence with X(D 

distribution, we have

c (n , ■■■,rk,0)  =  £'[exp(ir1yt +  ir2yt+i H 1- irkyt+k-i)]

=  E[exp(iriht + z'r1et +  ir2ht+l +  ir-2et+l H-----+  irkht+k-i + irket+k-i}
k

= £ ’[exp(z'r1/it +  ir2ht+l H +  irkht+k-t\  J J  ^exptirjC i+ j.t)]
j=i

= E[exp(iht oP~lTj +  iX Y  *. ^  rj +  Y  H  rja i~t)\
J=1 j=2 1 a  1=2 j=l

k

E[ ^[expO'rj-et+j-!)]
i = i

exp(ir r ^  S  “ ’" ‘•■j+ ix  s  V ^ r ' v -  5 (g Qj" ‘r' )2r = ^
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Appendix C 

Proof of Theorem  3.3.3

Defined as the logarithm of the CF, the cumulant generating function is of the form,

0 ( n ,  •• - , rk) =  l o g ^ n , - - - , ; - * , # ) )
k ^ 1   syj— 1 __r ,  _  l r V ^ ~ l r ^ 2  “  2\ * * 1 _  nP~l 1 * rr

J=2 ! - «  2 ! -

_ 5  S E “ j ~ S )2<t2 + S  los(r ( ̂  +  iTj)) + t Y i r, i°g 2 .
Z i= 2  j = /  j  =  l £  j  = l

Therefore, we have

var ( v )  -  92^ r i ’ - " ’rfc) | var{yt) — ^  lri=o

^  , r"(o.5) _  r(o .5) 2>

and

1 -  a2 r(0.5) v T(0.5)

\ _ d2<P(rl , - - - , r k) l
COVylJt i  V t + k —l )  — q ^  q ^  | r i= 0 ,r fc= 0

ak la2
1 — a 2

Hence the autocorrelation functions are.

, fc =  1, 2, • • •

*    1 —Qr~  r,   -I c\
Pk ~  , r»(o.5) _  / r '(o .5)p  > K ~  £ ->

i - q 2 r(0 .5)  ̂ r(o.5) >
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Appendix D

A sy m p to tic  C ovariance M atrix o f  th e  E C F  estim ator

With p =  1, we can define r  =  (r!,r2) ,s  =  ( s i ,s 2). By the way we defined ^ k(r,s)  

in Chapter 1, we have

^k(r,  s) =  E[exp(iriyi + ir2y2 +  i s m + i  +  is2yk+2 )]

=  £ ’[exp(iri/i1 +  ir2ah\  +  is \akhi +  is2a A:+1/il )]

F le x p ^ n ^  +  ir2e2 + isi€k+i +  is2e*+2)]
k  fc+L

E[exp(ir2vi +  zsx ^  aj- 'vk+i-j  + is2 £  QJ_lufc+2_J)]. (D.l)
3=1 3=1

For the stochastic volatility model,

* o (r ,» ) =  exp [ iA(ri +  aT2 +  S l +  aS2) -  a2(n + a r * + ^ +
1 — a 2(1 — a 2)

r(0.5 +  z(rt +  s l))r(0.5 +  i(r2 +  s2)) ni{ri+Si+r7+37)
r 2(o.5)

exp(—0.5(r2 +  s2)2a2) exp(zr2A +  zs2A), (D.2)

T f_  ̂ _  _ {■ A(ri +  a r 2 +  a s i +  a s 2) cr2(ri + ar2 + asi +  as l )2'
¥,(r,*) -  exp |i —  2(1 — a 2) .

r(0.o + »ri)f(0.5 + iSl + ir2)r(0.5 + „ilr,+„ +r,+„ ) (_ 0 3 ^ ! )
r3(o.5) * 2

exp(—0.5(r2 +  S! + as2)2a2) exp(zr2A +  zsxA +  zs2(l + a)A), (D.3)

and

A(ri +  ar2 + aks j +  a fc+ls2) cr2(r i + ar2 + atks i 4- a k+ls2)2'
Vk( r , s ) =  exp

1 - 0  2(1 - Q 2)
r(0.5 +  zrt)r(0.5 + zr2)r(0.5 +  zs1)r(0.5 +  zs2) i(ri+a,+r?+5o)

r 4(o.s)
exp(—0.5(r2 +  a fc_1si +  a fcs2)2<72) exp(—O.Ssjcr2)

1 — cyk 1 — a^+l
exp(zr2A +  z s i-  A +  is2—  A)

1 — a  1 — a

JJ{ex p (-0 .5 (aA:~:,s 1 +  a*+l_:*s2)2cr2)}, (D.4)
i =2
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where k > 2 in {DA). Define £ 2 as

E2 =  Jim  ^ V a r { K y{B0) +  • • • +  K n(0o)). (D.5)

Consequently, we can calculate £ 2 as follows,

dRec{r-9)dRec{s:9)  1 "
*  = S & f f  ¥ ° ^ 2± p m (cosir’X l M 'Xk])

® 72 J = 1 Jt=I V J

+

9
d lm c (r ;9 )  d lm c(s ]9 )  1 " "

— ^  i t ,  Cov(sin(r'xj) ,  s in(s 'xk)) }
n  j = i  k = i  v J  J9 9t

g(r)g{s) drds,  (D.6)

where the covariances in the integrand can be obtained by

- 7  i t ,  51 Cov(cos{r 'xj) ,cos(s’x k)\  (D.7)
n  j = i  k = i  v 1

1 1 n_I
=  — (Rec(r + s) +  Rec(r  — s)) — Rec{r)Rec{s) + — r V ](n — k)(Re ^ k{r, s)

2n 2nz

+Re k{r , - 3 )  +  Re ^ k{s, r )  +  Re ^ ( s ,  - r ) ) ,

5Z5Z Cov(cos(r 'x j ), s in (s 'xk)) (D.8)
n 7Ti*=i V J
1 1 ri_1

=  — {Im  c(r +  s) — I m  c(r — a)) — Re c{r)Re c{s) +  —— V ){n — k){Im  4/k{r , s ) 
2n 2nz

- / m  ^ ^ (r , - a )  +  /m  ^jfc(s, r) + I m  k(s , —r)),

1 n n , .
— ^  ^  Couf sin{r 'xj) ,  s in{s 'xk) ) (D.9)
n  j = i k = i  '  '

1 1 n_l
=  —  (ile c (r  +  s) +  Rec{r — s )) — Im c (r ) Im c(s )  +  — - YVn — k){Re ^ k{r. —s ) 

2n 2nz k=l

- R e  ^ ( r ,  s ) + Re $ k(s , - r )  -  Re ^ k{s, r)),

with c(r) =  c(r;0 ) which is defined by (3.4). Therefore, £ 2 can be calculated by

using {D.2), (D.3), (D.4), (D.6), (D.8), (D.9), and (D.10). Finally, based on £ 2, the
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asymptotic covariance matrix is

;{//( 
*-(//[

dRe c(r; 0) dRe  c(r; 9) d im  c(r; 9) d i m  c(r; 0)
de dO1

+ de de1
dRe  c(r; 9 ) dRe  c(r; 9) d i m  c (r ; 0) d i m  c(r; 0)'

dd1 d9 de1

g (r )dr idr2j  x 

g(r)dr ld r 2 j
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True Values of Parameters a  = 0.9 a  =  0.3629. A =  0.736 

No. of Replications=500 No. of 0bservations=2,000

a  =  0.9 a  =  0.3629 A =  -0.736

MEAN .892 .3812 .-7962

MED .895 .3763 -.774

MIN .75 .1985 -1.843

MAX .95 .6399 -.3401

RMSE .03 .067 .231

Table 3.1: A Monte Carlo Study of the ECF Method of a SV Model

True Values of Parameters a  =  0.9 a  =  0.3629, A =  —0.736 

No. of Replications=500 No. of 0bservations=2,0004

Method

05OIIa a  =  0.3629 A =  -0.736

GMM .88(.06) .31 (. 10) -.86(.42)

QML .88(.06) .383(.ll) -,853(.46)

MCMC .896(.02) .359(.034) -763(.15)

SML .902(.02) .359(.039) -.721(.15)

Table 3.2: Monte Carlo Comparison of GMM, QML, MCMC, and SML Estimates

4The table shows the mean and RMSE(in parentheses).
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Method a a A

ECF -.0676 .747 -0.29

MCMC 0.97 .15 -.002

Table 3.3: Empirical Comparison of ECF and MCMC Estimates

KS statistic p-value

ECF 0.0257 0.498

MCMC 0.0875 0

Table 3.4: Kolmogorov-Smimov Goodness-of-Fit Test of ECF and 
MCMC Estimates
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Method a a A

p = 2 -0.0719 0.743 -0.45

p = 3 -0.0822 0.740 -0.31

p = 4 -0.0927 0.738 -0.38

p =  5 -0.0742 0.731 -0.40

Table 3.5: Empirical Results of ECF Estimates with Different Values of p
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Figure 3.1: Empirical Density and Densities from ECF and MCMC Estimates
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Chapter 4

ESTIMATION OF THE DIFFUSION JUM P MODEL VIA  
EMPIRICAL CHARACTERISTIC FUNCTION

4.1 Introduction

Motivated by the non-linearity in financial time series, such as volatility cluster­

ing, researchers have resorted to the processes which can generate such a property. 

Among them are ARCH models proposed by Engle (1982), GARCH models proposed 

by Bollerslerv (1986), Stochastic Volatility (SV) models proposed by Clark (1973), 

Tauchen and Pitts (1983) and Taylor (1986), and the diffusion jump model with a 

self-exciting intensity proposed by Knight and Satchell (1993). A common feature 

for these models is that they allow for time dependence. Also, all these models can 

be representable as a martingale difference and hence consistent with the market effi­

ciency in the weak sense. Among these three types of models, the ARCH-type models 

have thus far attracted the most attention for at least one reason. The reason is that 

the estimation of the ARCH-type models is relatively easy to implement. Since the 

ARCH-type models have Markovian properties, the conditional maximum likelihood 

(CML) estimation method is usually employed. Unfortunately there are still some 

difficulties involved in the ARCH-type models. One of them is the model’s inability 

to explain that large changes are not unusual after stable periods, since the volatility 

evolves according to a deterministic mechanism. Another difficulty is that the model
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can not well explain the dis-continuity existing in the sample path of most financial 

time series; see Jorion (1988).

By introducing another error term and hence treating the volatility as a stochastic 

process, the SV model can overcome the first difficulty involved in the ARCH-type 

models. However, a new problem is arising. Even for the simplest SV model, nei­

ther the exact likelihood function nor the conditional likelihood function has closed 

form. Therefore, the likelihood based estimation method is extremely difficult to im­

plement. Consequently, some alternative estimation methods were discussed in the 

recent literature. The methods include the generalized method of moments (GMM), 

quasi-maximum likelihood (QML) method, Markov Chain Monte Carlo (MCMC), 

simulated maximum likelihood (SML) method and efficient method moment (EMM).

An alternative way to overcome the difficulty involved in the ARCH-type model is 

to compound a Brownian motion (BM) and a Poisson jump process. The jump com­

ponent is first introduced by Merton (1976) and extended by Jorion (1988) to explain 

the dis-continuity. Furthermore, to allow for non-linearity, the intensity parameter in 

the Poisson process is assumed to be self exciting and hence time dependent, making 

the model different from the model proposed by Jorion (1988). The model was first 

proposed by Knight and Satchell (1993) and then applied to fit the UK stock data by 

Knight, Satchell and Yoon (1993). Unfortunately, the maximum likehood method is 

not applicable to this model since the likelihood function has no closed form. Instead 

Knight, Satchell and Yoon (1993) employ the GMM method to estimate the model. 

When fitting the UK data to the model, however, they find that the GMM estimates 

sometimes do not make sense. For example, the estimate of the variance parameter 

for some stocks is negative. The finding is due to the poor finite sample properties 

of the GMM estimator. In this thesis, we use an alternative approach to estimate 

this model -  via the empirical characteristic function. This chapter is organized as
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follows. The next section introduces the diffusion jump model where the intensity 

in the Poisson jump process is self-exciting and explains why the model is difficult 

to estimate. Section 4.3 presents a discussion on ECF estimation for this model; the 

characteristic function of the model is obtained as well. Section 4.4 discusses the 

implementation of the ECF method as well as a Monte Carlo study and an empirical 

application. The proof of the theorem is in the Appendix.

4.2 The Model

It is common in financial literature to assume that the price of an asset at time t . 

P(t),  follows a geometric Brownian Motion (BM),

dP(t) = aP(t)dt  +  crP(t)dB(t), (2.1)

where B(t) is standard Brownian motion, a  is the instaneous return and a2 is the 

instaneous volatility. By including the jump component, Knight and Satchell (1993) 

assume that the price follows the mixed Brownian-Poisson process,

dP{t) = aP{t)dt  +  aP(t)dB(t)  +  P(t){exp(Q{t)) -  1 )dN(t),  (2.2)

where Q{t) is a normal variate with mean fiQ and variance <7q in the interval (£, t + At], 

N{t) is a Poisson process with intensity parameter A(t), and Q(t) is independent with 

N(t).  By using Ito’s lemma, we can solve the stochastic equation (2.2) for the stock 

return X (f)(=  log(P(t) /P(t  -  1)),

2
X(t)  =  + 1 )+  £  Q(n)

*  n = l
AiV(t)

=  nt + a B (  1)4- <5(n )> (2-3)
n = l

where n =  a  — Hence the behavior of X  (t) depends not only on the continuous 

diffusion part (a  — ^ ) t  +  aB(  1), but also a dis-continuous jump part J2n=i^ Qin)-
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The continuous part is responsible for the usual day-to-day price movement, such 

as temporary imbalance between supply and demand or firm-specific information 

that only marginally affects the value of the stock. The dis-continuous jump part 

corresponds to the arrival of new important information to the market. When the 

jum p part has a significant effect, a large change can certainly follow stable periods. 

Furthermore, the Poisson process N(t) is assumed to have an intensity function A(t) 

which is self-exciting as follows,

m I
A (i) =  £  a y ( t  -  i) + ' £ 0 i V ar(X i t  -  » | / ( t  - j -  1)), (2.4)

1=1 j = l

where u(t) is N ( 0 , 1) conditional on N(t),  and I(t) is information up to the close 

of the market on day t. The motivation for the model is the idea that the flow 

of information at day £’s trading is conditioned by the news known at the close of 

trading at day t — 1 or prior to opening at day t. Also, the motivation comes from 

the idea that the expected number of jumps, which corresponds to the arrival of new 

important information to the market, depends upon past volatility and derivation 

from fundamentals B 2( 1) (=  v2{t)). Due to the dependency of A(f), A'(f) could be 

time dependent. Considering the conditional variance of AT(£), we have

V a r { X { t ) \ I ( t -  1)) =

(m I
— i) + Y^PiV(ir{X{t -  j ) \ I ( t  -  j  -  1))

<=i j=i

Obviously the conditional variance is time dependent and volatility clustering can 

be accounted for by the model. Unfortunately, X(t)  has no closed form expression 

for the likelihood function because it compounds three processes, the BM, a Poisson 

process and an i.i.d. xfi) sequence. This lack of tractable form for the likelihood 

makes the ML method difficult to implement.

For simplicity, Knight, Satchell and Yoon (1993) consider the model with m  =

j  • (2-5)
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Z =  1 in Equation (2.4), i.e.,

A(t) =  a u \ t  -  1) +  0Var{X{t  -  1)|/(Z -  2)). (2.6)

In Appendix A, we will show that Equation (2.6) is equivalent to

A(t) =  0a2 + 0{h2q +  <jQ)\{t -  1) +  au2(t -  1), (2.7)

or

V ar(X ( t ) \ I ( t—1)) =  a2+fi(fj.Q+aQ)V'ar(X(t—l)|/(t-2))+a(/Zg+crQ)z/2( t - l ) .  (2.8)

Knight, Satchell and Yoon (1993) claim that m  =  I =  1 is found to suffice in most ap­

plications. From Equation (2.8) we can tell that the model is similar to GARCH(1,1) 

model proposed by Bollerslev (1986). For the model based on Equation (2.3) and 

Equation (2.6), some conditions on the parameters are needed for the stationarity of 

the process. See Knight, Satchell and Yoon (1993) for details. Furthermore, they give

the formula to calculate up to the fifth cumulant and the covariance between X ( t )

and X ( t  — s). Based on the results on moments, the GMM estimator can be obtained. 

However, since the GMM only uses a few moment conditions, it is not surprising that 

the finite sample performance is not good. In the next section we will derive the char­

acteristic function of X(t)  and then perform the estimation based on the empirical 

characteristic function. Since the characteristic function contains the same amount 

of information as the distribution function, the model is fully and uniquely parame­

terized by the CF. Therefore, inference based on the ECF can outperform that based 

on the GMM.

4.3 ECF Estimation

The model we are going to estimate via the ECF is defined by (2.3) and (2.6). In 

order to use the ECF method, of course, we need to find the expression of the joint
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characteristic function. The joint characteristic function for X(t),  ■ • •, X ( t  — k ) is 

obtained in the theorem below. The joint characteristic function for the model defined 

by (2.3) and (2.4) can be obtained in the similar way.

T h eo re m  4.3.1 I f  a random process {X (t)}”=1 is a compound Poisson process with 

self-exciting intensity which is defined by Equations (2.3) and Equation (2.6), then 

the joint CF of X (t), • • •, X(t — k) is,

c(ri, ■ ■ • ,rjfc+i; 9) =
f c + l  1  f c + l  (  a  2 k + l

exp(i/z ]T  rj -  - a 2 Y  r]) exp < — — Y  G(rj)
3=1  Z  j = l  { L ] = l

o o  f  k + l  ^  ^ 2 k + l  I

II -  2ad>1 Y  P ^ G i r j )  I II i 1 ~  2a
/ = 0  (  j = l  J j = 2  I

r 2<r2where (f> =  /?(p | + 0q), G(r) = exp(ir3HQ L̂ 3-) -  1, and 0 =  (p, a2, a, fi, (Tq)

is the parameter.

P roof: See Appendix A.

Using this theorem, we can easily obtain the covariance for the returns and square 

of the returns. For example, Cov(X(t),  X ( t  — s)) =  2pLqa29s /  {I — 02). Hence X(t)  

and X ( t  — s) are uncorrelated when (jlq = 0. However, X{t)  and X ( t  — 1) are not 

independent in any case since c{r\,r2) ^  c (rL)c(r2).

In order to use the ECF method to estimate the model defined by (2.3) and (2.6), 

we have to choose a value for p. As we argued before, a larger value of p works better

than a smaller value of p, however, we shall choose p =  1 at first. For the model

defined by (2.3) and (2.6) we note that with p =  1,

n { l - 2Q ^ G ( r , ) + G ( r 2))} l/2 ( l - 2 a G ( r , ) ) - i ,  (3.2)
1=0

c(r i ,r2,0) = exp | ^ 7 ^ ( G (r i) + G ( r2)) +  *>0 t  + r2) -  ^ 2{r\ + r\)
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and
1 n

Cn(n,r2) =  -  J^ e x p ^ n i/j  +  ir2yj+i). (3.3)
n j=i

Defining Rec(rx,r2, 0 ), Recn{rx,r2), lm c { r \ , r2, 0 ) and Im c n fr x ,^ )  to be the real 

and imaginary parts of c ^ ,  r2) and cn(rl , r2) respectively, we have,

1 71
=  - y ' Cos(riyJ + r 2yj+l), (3.4)

n j=i
and

1 "
/m  Cn^t, r2) =  -  53 sinixiVj + r2yj+1). (3.5)

n  j =i

As we mentioned before, a clear advantage of choosing the transformation variable 

continuously is that we do not need to choose q. Furthermore, since the Monte Carlo

study conducted in Chapter 2 shows that the continuous ECF method works better

than the discrete ECF method, we use the continuous ECF method to estimate the 

model. However, the optimal weight function in the continuous version is not readily 

obtained because the conditional score function has no closed form expression for 

the model. Instead we use the OLS of the continuous ECF method with a constant 

weight function chosen over an interval [0,1]. Therefore, the procedure is to choose 

{p.,a2, a, .3, £iq, cjq) to minimize,

Jo Jo \iRe c(n- r 2,  0) ~  i  £ ”=i cos{iTiyj + ir2yJ+l))2 (3.6)

+ ( /m c (r1, r 2,fl) -  £ £"=i sm (zr1yi + ir2yj+l))2 drxdr2,

where c (ri,c2) is given by (3.2).

We can check that the appropriate regularity conditions given in Chapter 1 hold. 

Therefore, the resulting estimators are consistent and asymptotically normal. The 

asymptotic covariance matrix of the estimators is given below,

I f  \dRec(r \0)  dRec(r\0) d lm c (r ;0 )  d lm c (r ;0 )  1
nXJoJA— ee---------------W ~  + — ad------------------W ~ \ i r 'dr2) *

^2  f r l f l \dRec{r \0)  8Rec(r\0) d lm c {r \0 )  d lm c{r \0 )  1 ) _1E XU L I- ae aS^ + —ae W~~ dndr2l ’
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4.4 Implementation, Simulation and Application

4.4 .1  Im p lem en ta tion

The implementation of the ECF method essentially requires minimizing (3.6). and 

thus involves double integrals. Unfortunately, no analytical solutions for either the 

double integrals or the optimization are available. Consequently, we will numerically 

evaluate the multiple integral (3.6), followed by numerical minimization of (3.6) with 

respect to Q. The numerical solutions are the desired estimators.

A DCUHRE algorithm proposed by Bernsten, Espelid and Genz (1993) is used to 

approximate the two dimensional integrations in (3.6). Since there is no analytical ex­

pression for the derivative of the objective functions, the Powell’s conjugate direction 

algorithm (see Powell (1964)) is used to find the global minimum. All computations 

were done in double precision.

By using the implementation procedure, we examine the performance of the ECF

method in the estimation of the diffusion jump model in a Monte Carlo study. We

also apply the procedure to a real dataset.

4.4 .2  M onte C arlo S im u lation

The Monte Carlo study is designed to check the viability of the ECF method. For 

simplicity, in the model defined by (2.3) and (2.6), we let /z =  //q =  cr =  0, a  =  1, 

and thus 0 =  f3dq. Therefore, the model can be rewritten as,
&N( t )

X(t)  = £  Q(n), (4.1)
n=I

where Q(n)\AN(t)  ~  i.i.d. N(0, Oq), A N(t)  ~  P(\( t)) ,  and

A(t) =  <f)\{t — 1) +  v2{t — 1). (4.2)

Obviously, for the process {A(i)} to be stationary, \<j>\ must be smaller than 1. We 

choose parameters as ctq =  1 and (3 =  0.5, which implies 0 =  0.5. The number of
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observations is set at T  =  2,000 and the number of replications is set at 500. For the 

numerical optimization, the starting point is chosen to be the GMM estimates. In 

the GMM, we use the second and fourth cumulants and the weight function is chosen 

to be the identity matrix.

Table 4.1 reports the simulation results. The table shows the mean, median, 

minimum, maximum, mean square error (MSE) and root mean square error (RMSE) 

for both estimates, and serves to illustrate that the ECF method outperforms the 

GMM. Also see Figure 4.1 and Figure 4.2. From the table and two figures, we know 

that, with the same weight function for both methods, the ECF works much better 

than the GMM. For example, the MSE of fi for GMM is at least 15 times larger than 

that for the ECF. The results for the estimates of cTq also favor the ECF method.

4.4 .3  A p p lication  

D ata

The data we used is the same as that we used in Chapter 3. We plot it in Figure 4.3. 

The October 1987 stock-market crash can be clearly identified in the graph.

Em pirical R esu lts

In this empirical study, we fit the model defined by (2.2) and (2.6) to the data. The 

parameters of interest are 6  =  (/i,cr2,a, {3, fJ.Q,crq). Again we let 0 =  3 (^ q +  cr^). 

To simply the model, we shall assume that AT(t) is stationary. Consequently, A(t) 

has to be stationary. From (2.7) we know that A(t) is stationary only if |0 | < 1. We 

further require a , > 0 to guarantee the intensity function to be non-negative. Two 

constraints are a2 > 0 and Oq > 0. The empirical results are reported in Table 4.2.

Firstly, from Table 4.2, we can calculate 0 =  0{fiQ +  ctq) =  0.29, which implies 

a positive correlation of the conditional variance between two consecutive trading
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days. Furthermore, the conditional variance at day t has less dependency on the 

deviation from market fundamentals v(t — 1). This dependency is captured by the 

a ( f j . Q  + < 7 q ) ,  which equals to 0.001. Also note that the corresponding parameters in 

the GARCH(1,1) model are usually much larger. Therefore, our estimates suggest 

much lower volatility clustering and hence less inefficiency in the market.

Secondly, we note that the instaneous mean and variance in the continuous part 

are 0.055 and 0.79 respectively. As we mentioned before, the continuous part is due to 

general economic information which only has marginal effect. Therefore, on average 

the log return is about 0.055% because of the normal economic activities.1

Finally, since /jq and (Xq corresponds to the mean and variance of the normal 

variate in the dis-continuous part, hq = —0.16 implies a negative return due to the 

impact of important information and Oq — 6.18 suggests a much bigger volatility an 

average important information can incur than that the usual information can incur.

^ h is  is because X (t )  =  100(log(P(i +  1)) — log(P(£))).
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Appendix A 

P roof of Theorem  4.3.1

We start the proof by showing that Equation (2.6), Equation (2.7) and Equation (2.8)

are equivalent. From the definition of I ( t  — 1), we have
AiV(t)

V a r ( X ( t ) \ I ( t - l ) )  = Var(v + a B ( l ) +  £  <?(n)|A(f)) =  a 2 + M t ) ^ 2Q + a 2Q). (A .l)
71=  1

Substituting out X(t) in Equation (2.6), we then have,

Var(X(t) \ I ( t  -  1)) =  a2 +  a (hq +  0 qM £ — l )2 + {3{hq +  aq)Var(X( t  -  l) |/(£  — 2)).

(A.2)

Therefore, the condition variance of this model follows a GARCH(1, 1). However, by 

substituting out Var(X(t  — l) |/(£  — 2)), we have,

A(t) =  0a2 + (3(hq +  <7q)A(£ -  1) +  au2(t -  1), (A.3)

which is Equation (2.7). Since the intensity represents how fast new information 

arrives, Equation (2.7) means that the speed of the arrival of new information today 

depends on how frequent new information has arrived yesterday, as well as a random 

component. By applying backward induction to Equation (2.7), we have

8a2 t~2
A(£) =   -----r ( l -< £ £ 1)+</>£ lA(l) + a J 2 < ^ ^ 2(t ~  j  ~  1)- (A.4)

1 -  P j=0

If \(j)\ < 1, as t —> oo,

f in 2 °°
A(£) =    T + -  i). (A.5)

1 “  j =o

Consequently, the characteristic function of A(£) is,

'f(r) =  E(exp(irX(t)))

g L  + t M t - j - m }

= exp(ir ) TT(1 — 2ia<fj)~*. (A.6 )
1 “  j=Q

= E  |e x p  (is(
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A N ( t - l )

Y  Q ( n ) | A i V ( *  -  0  ~  N(fiQA N ( t  -  l ) , a2QA N{ t  - I ) ) ,
71=1

we have,

{
k + l  /  A J V ( t - / )

n  e xp  ( *r « e  Q(n )

"jfc+1 AAT(t-i)

J J  exp(zr, Y  Q(n))\AN{t -  I), I ( t  -  k)
1=1 n = l

=  E l E l E

C r +l r 2
=  E  < E  J J  exp(ifjLQriAN(t -  I) — -j-OQAN(t — l))\I{t -  k)

I li=i *
(k+i r2 }

=  E  | n  exp[A(i -  Z)(exp(ijigr, -  -j-o2) -  1)] j

Ar+l Pa

i=i

+a(u (t -  j  -  1) +  • • • -F (j> V ( f  -  fc)))(exp(z>Qr, -  —a'-) -  1)]}

=  exp
*+l an2 -2
Y  i t (1 -  0 * ')(exp(z/zQr, -  -j-a2) -  1)
7T? 1 -  0 2U=i

E  |e x p  A(t “  E  (&k+l *(exP(^Q ri “  ^ _cr2) ~  }

{fc+i
n exp
i=i

a (v2(t — j  — 1) H h <j)k 1 lu2(t -  k))(exp(inQri -  -TfG2)l ~2\

=  exp
■k+l a  2 2

Y  ~  0 fc_')(exp(ifiQri -  -j-a2) -  1)
L/=l 0
J  Pa2 *±!

e x p\ w S
0 °  (  k + l

n i - 2a<y e
7=0 L Z=1

' k + l  (  J

0 fc+l '(exp(z>Qr, -  -2-o-2) -  1)

<j>k+l '(exp(ifiqrt -  -±a2) -  1)
)

E  ^exp

=  exp

Y  q E 0 J ' ( e x p ( i / X Q r /  -  ± a 2) -  1 )
7 = 2  V  1=1

P*7
« P  E
-V2 ,

o o  f  k + l  1  ' ^ i + l  (  3

I I  1 - W  Y  0 f c + l * J‘G ( r i )  [  n  1 - 2 - E  0 M G ( r i )
/ = 0  [  J = 1  J  3 = 2  I  ' = 1

- 1 /2

R ep ro d u ced  with p erm issio n  o f  th e  cop yrigh t ow ner. Further reproduction  prohibited w ithout p erm issio n .



www.manaraa.com

91

f  g a  2 * + i  1  00 f  * + 1  ^  1 / 2
=  exp 1 Y^4>  S  |  n  | 1 ~  2a^  IZ  ^ +l' JG(7'i)

*:+i r j ) _l/2
n  i - 2a E ^ ( n )  (A.7)
j =2 L i=l J

Thus, the characteristic function of X(t) ,  ■ ■ ■, X ( t  — k) is,

c(ru ■ ■ - , r k+l]d)

= E  (exp(ir1AT(t) H h irk+iX ( t  -  A;))}

{ A N ( t - l )  A  N ( t - l )

exp(zri(/z +  <t5(1) +  ^  Q{n)) + • ■ ■ + irk+l{^ + aB{  1) +  £Z <5(n )))

n = l  n = 1

{ J f c + 1  Jfc+1 A iV ( t- l )

exp(*/i5 3 ri)exp(za(rlWr(l) +  --- +  r*+iWr( l ) ) ) e x p ( ^ i r / JZ

Z=I (=1 n=L

k + l  1 Jf c +1  ( J f c +1  /  A iV (t- l)

= exp(*> jz rJ - 9a2 iz r>)£; ̂ n exp iri e  Q(n)
j = l  “  ] = l  [ l = l  \  n = l

fc+1 1 k + l  f  q  2 * + l

=  exp(z> Y1 ri ~  - j f  E rj) exP j

00 f  J f c + i  )  - 1 / 2  J k + i  f  j  '  ~ l / 2n 1-w  e  <t>k+x-]G{rj) [ n \1 - 2
1=0 I j =1 J j=2 [ 1=1
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True Values of Parameters 0  =  0.5 0q =  1.0 

No. of Replications=500 No. of 0bservations=2,000

IOoII a \  =  1.0

ECF GMM ECF GMM

MEAN .5098 .5602 .9792 .9792

MED .5078 .5408 .9746 .9512

MIN .3408 .0958 .6342 .4213

MAX .6481 1.804 1.340 1.706

MSE .00276 .0469 .0184 .0407

RMSE .0525 .2165 .1358 .2016

Table 4.1: Monte Carlo Comparison of ECF and GMM for a Diffusion Jump Model

Method a 2 a P HQ a Q

ECF 0.055 .79 0.00016 0.047 -0.16 6.18

Table 4.2: Empirical Results when Fitting the Diffusion Jump 
Model to SP500 Daily Returns
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Figure 4.1: Density Function of Estimator of <Jq in the Diffusion Jum p Model
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Figure 4.2: Density Function of Estimator of /3 in the Diffusion Jump Model
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Figure 4.3: SP500 Daily Returns
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Chapter 5

A TEST STATISTIC AND ITS APPLICATION IN  
FINANCIAL MODELLING

5.1 Introduction

Modelling stock returns has been a very interesting topic for a long time. One reason 

is that some important models in financial theory critically rely on the distribution 

form for the returns of underlying stocks, such as the option pricing model. In the 

search for satisfactory descriptive models of stock returns, many distributions have 

been tried and some new distributions have been created over past several decades. 

All these alternative models can be categorized by two families. One is finite-variance 

distributions. Examples include the normal distribution by Osborne (1959), the Stu­

dent t distribution by Blattberg and Gonedes (1974), the mixture of normals (MN) 

by Kon (1984), the compound log-normal and normal (LN) distribution by Clark

(1973), the mixed diffusion-jump (MDJ) model by Press (1967) and more recent 

one, the Weibull distribution by Mittnik and Rachev (1993). The other family has 

infinite-variance, such as the Stable distribution by Mandlebrot (1963).

The Stable distribution has been appreciated as a possible alternative to describe 

the stock returns for both statistical and economic reasons. Statistically speaking, the 

Stable distribution has domain of attraction and belongs to their domain of attraction. 

Economically speaking, the stable distribution has unbounded variation and allows
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arbitrage, and hence is consistent with continuous-time equilibrium in competitive 

markets (see McCulloch (1978)). Furthermore, a sample path generated by the Stable 

distribution almost surely contains an infinite number of dis-continuities, consistent 

with the efficient market hypothesis (see McCulloch (1978)).

Despite these appealing properties, the Stable distribution is less commonly used 

today. It has fallen out of favor, partly because of the difficulties involved in the­

oretical modelling; standard financial theory, such as option theory, almost always 

requires finite variance of returns. Furthermore, evidence has been found against the 

Stable distribution. Firstly, by using the likelihood ratio test, Blattberg and Gonedes

(1974) found that the Student t distribution has greater descriptive validity than the 

symmetric Stable distribution, and Tucker (1992) found that finite-variance models 

outperform the asymmetric Stable distribution. By using the Komogorov-Smirnov 

test, M ittnik and Rachev (1993) found that the Weibull distribution is a suitable 

candidate. Secondly, when the tail behavior was investigated, Akgiray and Booth 

(1987) found that the tails of Stable distribution are too thick to fit the empirical 

data. Thirdly, Lau, Lau and Wingender (1990) found that as the sample size gets 

big the sample variance seems to converge while the Stable distribution implies that 

sample variance should blow up rapidly. Finally, the evidence provided by Blattberg 

and Gonedes (1974) indicates that the distribution of monthly returns conforms well 

to the normal distribution, while the Stable distribution implies that long horizon (for 

example, monthly) returns will be just as non-normal as short-horizon (for example, 

daily) returns.

The purpose of this chapter is to re-examine the descriptive power of the finite- 

variance distribution family and the infinite-variance distribution family as models of 

daily stock returns. However, instead of using overall goodness of fit testing methodol­

ogy, we concentrate on studying the variance behavior for chosen distribution families.
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To be more specific, we propose a test statistic to distinguish finite-variance families 

against infinite-variance families for stock returns. Particular attention is paid to 

the variance due to two reasons. Firstly, as far as the variance is concerned, an 

infinite-variance model is fundamentally riskier than a finite-variance one. Secondly 

and more importantly, many financial models critically depend on the assumption 

on the second moment. Examples include the capital asset pricing model (CAPM) 

and the Black-Scholes model. As a result, finite variance and infinite variance could 

have very different implications for theoretical and empirical analysis. Unfortunately, 

testing for finite variance or infinite variance based on a sample without choosing 

specific distribution families will probably never be possible to have a test with uni­

formly good power. Instead of directing the test on variance itself, we test a specific 

finite-variance model against a specific infinite-variance model.

This chapter is organized as follows. The next section introduces the test statis­

tic, motivates the intuition behind it, and obtains the statistical properties of it. 

Section 5.3 briefly summarizes the candidate models of the stock returns, including 

finite-variance family and infinite-variance family. The proposed statistic is used to 

distinguish these two families. Section 5.4 discusses the implementation of the test 

as well as Monte Carlo studies and an empirical application. Section 5.5 concludes. 

All the proofs are collected in Appendix A and B.

5.2 Proposed Statistic and Its Properties

DuMoucher (1973) states that if a sample has a standard deviation many times as 

large as the interquartile range, the Data Generating Process (DGP) could have an 

infinite variance. However, he does not give a statistical analysis to indicate when 

the DGP has an infinite variance. Despite this we find that his statement is quite
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intuitive and a study along this line serves our purpose to distinguish finite variance 

models and infinite variance models. In other words, the statistical properties of the 

relative magnitude of the sample standard deviation with the sample interquartile 

range should be investigated.

Suppose {A"i}”=1 be a sequence of observations with common distribution function 

F(x), common density function /(x ) , mean /i and variance a2. Let

n ~  1 1=1

be the sample variance, where ft is the sample mean. Denote the quantile process 

by Qn(t) (see Chapter 6 , Csorgo and Horvath (1993)). The proposed test statistic is 

then defined as,

r "W  =  Q M - o « ) - Q M '  (2' !)

where 0 < 90 < 0.5. Hence the denominator is the 0o-quartile range and indeed 

the interquartile range when Q0 =  0.25. Therefore, T^O^S) is basically the ratio 

of the sample standard deviation and sample interquartile range. If the true DGP 

has an infinite variance, more observations must be from the tails and sn —> oc  as 

n —»• oo. On the other hand, however, both Qn(0.75) and Qn(0.25) are finite for any 

n. This implies the unboundness of Tn(0.25). If the true DGP has a finite variance, 

less observations come from the tails. Hence sn -> a  as n —> oo and Tn converges 

to a finite number as n —̂ oo. Consequently, it is reasonable to believe that a large 

Tn comes from a DGP with infinite variance rather than a DGP with finite variance. 

Thus we set up the hypothesis as the following,

Hn : DGP is a certain finite variance distribution.
{  (2 .2 )

Hi : DGP is a certain infinite variance distribution.

If Hq is rejected, the model in Ho should not be used as a candidate model.
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In this subsection we assume X x, X 2, —, X n to be iid random variables. The prop­

erties of Tn are established in this section. Their proofs axe found in Appendix A.

T h eorem  5 .2 .1  Tn is invariant for a scale-location family.

This is an indeed appealing property. For a scale-location family, no m atter how big 

the scale is, the expectation of the statistic always takes the same value. In other 

words, if we think of Tn as a measure of risk, the risk associated with a scale-location 

family is a constant. Because of this property, any scale-location family can be treated 

as one model.

T h eorem  5 .2 .2  I f  o2 < + 00, and Q{t) is continuous at 9Q and 1 — d0, then

Tn —* T  =  — - —  < 00 a.s., (2.3)
9i -  Qo

where qx = Q( 1 — 60), q0 = Q(90) with Q(t) = i n f { x  : F(x)  >  £}.

This is the result of the strong law of large numbers (S.L.L.N.).

T h eorem  5 .2 .3  Assume that

(i) f (q  1) > 0 , /(g 0) > 0 .

(ii) f ( x)  is continuous m a neighborhood of q̂  and q0. 

I f  E \X i\4 < 0 0 , then,

Vn(Tn — T) -4 iV(0, £ 2), (2.4)

that is,

Tn ~  N(T,  — ),n (2.5)

where

a { I { X l > q x} - 9 Q) a { I { X x < g0} -  90)
f ( q 0)
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This central limit theorem (C.L.T.) is the main result of the chapter since the hypoth­

esis test formulated is based on it. If the model in H0 has good descriptive power, 

followed by the C.L.T., it must yield a T  value which is close to the empirical Tn. 

Although Tn is invariant for a scale-location family, it is important to note that in 

general both T  and £ 2 depend on /  and hence H0. Therefore in general our statistic 

cannot be used to test the following hypothesis,

Ho : DGP is any finite variance distribution,
(2 .6 )

Hi : DGP is any infinite variance distribution.

Instead T„ is a non-nested test of a specific finite variance distribution against a 

specific infinite variance distribution.

T h eorem  5.2.4 Under assumptions of the theorem (5.2.3), i f  f  is symmetric, then

v>2  K  1 , 20o(1 -  20o) , OqCi -  (1 -  d0c2)
^  ~  4a2 +  +  ^  * V - ‘>

where K  is the kurtosis of X , a =  b =  crf(q),ci =  f l l0O( ^ B)2f ( x ) d x ,  and c2 =

C ( ^ ) 2/(* )d * .

T h eorem  5.2.5 Tn is consistent.

This property guarantees a good power of the proposed test statistic when the number 

of observations is big enough.

5.3 Candidate Models for Daily Stock Returns

In this section we introduce the most well-known time-independent models for daily 

stock returns, briefly review the properties of the candidate models, and discuss 

the relevant estimation method and numerical algorithm if necessary. In the finite- 

variance family, the normal distribution, the Student t distribution, the mixture of
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normals, mixed diffusion-jump model, the compound log-normal and normal model, 

and the Weibull distribution are presented, while the Stable distribution represents 

infinite-variance family.

5 .3 .1  N orm al D istr ib u tio n

The first model used in the literature to describe daily stock returns is the normal dis­

tribution proposed by Bachelier (1900) and extended by Osborne (1959). Black and 

Scholes (1973) provide a formula to price a option assuming the normality of under­

lying asset. Although the assumption of normality greatly simplified the theoretical 

modelling, many empirical studies have shown evidence against it (see Blattberg and 

Gonedes (1974), Clark (1973), Kon (1984) and Niederhoffer and Osborne(1966)). For 

example, empirical daily stock returns exhibit fatter tails and greater kurtosis than 

the normal distribution. Despite this evidence, in this paper we still choose it as a 

competing model because we want to check the validity of this assumption by using 

our test statistic. We note that all moments for the normal distribution exist and the 

kurtosis for the normal family is three. Furthermore, since the normal distribution 

belongs to a scale-location family, Tn is invariant with respect to both n and a 2 and 

hence parameter estimation is not necessary.

5 .3 .2  S tu d en t D istr ib u tio n

The Student distribution is first proposed to model the stock returns by Blattberg 

and Gonedes (1974). Its density is,

9(x) =  rt(1r a /1 (r  ]t n f [v+H{x - < 3 1 >

where v > 2, and H, m, v are the scale parameter, location parameter, and degrees- 

of-freedom parameter. Therefore, Tn is invariant to both H  and m, but depends on 

v. Furthermore, when u > 4 the Student distribution has a finite fourth moment
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and hence the C.L.T. in Section 2 can be applied. The model is estimated by the 

maximum likelihood method using a Quasi-Newton algorithm .1

5.3 .3  M ixture o f  N orm als

Kon (1984) proposes to use the mixture of normals to model stock returns, i.e., the 

stock return Xi come from with probability aj and qj a* =  1. A

characteristic of this model is that it can capture the structural change. The density 

function is,

s ( l )= § a^ exp{ - i£^ r ! )' (32)
All moments exist for the mixture of normals. However, in this paper we only consider 

the mixture of two normals due to two reasons. Firstly, Tucker (1992) found the 

mixture of two normals has the greatest descriptive power among the family of the 

mixture of normals. Secondly, we want to avoid a model with too many parameters. 

The parameters of interest for the mixture of two normals are a, n2, o \, erf and Tn 

depends on all of them. The maximum likelihood method is employed using a program 

proposed by Venables and Ripley (1994) based on Newton-Raphson algorithm.

5 .3 .4  M ixed  D iffusion-Jum p Process

Press (1967) and Merton (1976) propose a process which mixes Brownian motion and 

a compound Poisson process to model the movement of stock prices,

dP{t) =  aP(t)dt  + crDP{t)dB{t) + P(t)(exp{Q) -  l)dJV(f). (3.3)

where B(t) is a standard Brownian motion (BM). N(t)  is a homogeneous Poisson 

process with parameter A. Q is a normal variate with mean /j ,q  and variance O q  and

independent with N(t).

1 With little effort, we can show that ttiml =  ^ Yl?=i Vi- Therefore, only parameters H  and v 
are considered in the numerical algorithm.
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Using Ito’s Lemma, we can solve the stochastic differential equation (3.3) for the 

stock return AT(t)(= log(P( t ) /P( t  -  1))),
A N( t )

X(t )  = hd + &dB ( 1) +  ^2  Qn, (3.4)
n = l

2
where fig =  a  — The density function for the process is,

,  ̂ ^ e ~ x\ n (  (x -  fiD -  nfj.Q)2\  1
J ( I )  =  5 — “ p ( -  (3o)

All moments are finite for this density and Tn depends on all five parameters fiD, 

cr2D, hq, Oq and A. The maximum likelihood estimates are found by using a Quasi- 

Newtom algorithm. However, to numerically maximize the likelihood, we have to 

truncate the infinite sum in the equation (3.5) after some value of N . In practice, we 

choose N  = 11 which provides satisfactory accuracy.

5 .3 .5  C om pound Log-norm al and N orm al

This model was first proposed by Clark (1973). Instead of modelling returns as drawn 

from a single distribution or a mixture of two distributions, Clark (1973) assumes the 

returns to be conditional normal, conditional on a variance parameter which is itself 

stochastic. To be more specific, he assumes X i\Z  ~  N {0, Za\) and log(Z) ~  N(a,  a2). 

The density is then,

g^  = L { ^ dz' (3'6)Jo y/2irzo% 2zrJi z \ j eln a \ 2oi

It is easy to show that a  and a2 can be only identified jointly. See Appendix B for 

the proof. Consequently, we assume X ,|Z  ~  iV(0, Zcr2) and log(Z) ~  N(0,a2).  The 

density is then,

9 ( x ) = ( 3 7 )

All moments exist for this density and T„ is invariant to a\.  The estimates are 

obtained by the maximum likelihood method using a Quasi-Newton algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

105

f (x )  =  <

5 .3 .6  W eib u ll D istrib u tion

Mittnik and Rachev (1993) were the first to propose the use of the Weibull distribution 

to model stock daily returns. The Weibull distribution is attractive since it is one type 

of min-stable distribution (Mittnik and Rachev (1993)). More specifically, suppose 

m n = min{ATi, • • •, A',,}, where Xi,  ■ ■ ■, X n are iid. If, for some constants > 0 

and dn 6  R, Cnmn +  dn A  Z, where Z  is a random variable with non-degenerate 

distribution function m, then m  could be a Weibull distribution.

The density function for the Weibull distribution is,

0 if x  < b

^ r ' e x p M ^ ) ” } if x > 6

where a  is the index parameter, b is the location parameter and a is the scale 

parameter and thus Tn is invariant to both a and b. Furthermore, the density 

has finite all order of moments, for example, E{X)  =  o,T(^ +  1) +  b,Var(X)  — 

“2{ r ( J  + 1) -  ( r ( i  +  1)^ j .  The estimates are obtained by the maximum likelihood 

method using a Quasi-Newton algorithm.

5 .3 .7  S tab le  D istr ib u tion

Mandlebrot (1963) is the first person who proposes the Stable distribution to model 

stock returns. The Stable distribution is usually characterized by the characteristic 

function. The characteristic function of the general Stable distribution is given by,

t 7TCt
c(t) = exp{iat -  c|£|Q[l +  i/3— tan (— )]}, (3.8)

where index (a), skewness (/I), scale(c), and location(a) are parameters. Therefore. Tn 

is invariant to both c and a. If 1 < a < 2, which is the case for almost every financial 

series, the tails of the stable are fatter than those of the normal and the variance is 

infinite. Unfortunately, the density function has no closed form for 1 < a  < 2. The
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maximum likelihood method is difficult to implement. Instead in this paper we obtain 

the estimates of the model by using the method proposed by McCulloch(1986).

5.4 Implementation, Simulation and Application

The dataset we use is daily returns for the Standard and Poor 500 (S&P500) stock 

market composite raw index. We consider three different periods. The first one is 

pre-crash sample covering the period from January 1976 to March 1985 with 2,400 

observations. The second one also has 2,400 observations but covers the period after 

the crash from May 1988 to July 1997. The entire sample from January 1976 to July 

1997 with 5,614 observations is also examined. Table 5.1 reports Tn with 60 =  0.25 

for these three samples. We note that the post-crash sample shows a larger value of 

Tn than the pre-crash sample. Furthermore, since the entire sample includes October, 

1987 — stock-market crash days, it is not surprising that the associated Tn is largest.

As we argued before, the hypothesis we are going to test is the one given by (2.2). 

Since all the competing models except the Stable distribution have finite variance, 

we set H0 to be one of these models and Hi to be a Stable distribution. When Tn 

is parameter free under Hq, we can choose H0 to be one distribution family, such as 

the normal family. Unfortunately, in most cases Tn is not completely parameter free. 

Consequently, Hq has to be a certain model with parameters specified.2 Furthermore, 

since H\ is Stable distribution whose parameters a  and /3 affect the value of T„, a  

and (3 have to be specified in H\. Therefore, to implement the test, we have to first fit 

the models in both Hq and Hi to the data sets. The relevant estimation method for 

each candidate model was presented in Section 3. After setting up the hypothesis, we 

can obtain the asymptotic mean and asymptotic variance for Tn based on Theorem

5.2.3 in Section 5.2. The p-value is then calculated.

2 Actually only those parameters on which Tn depends are needed to be specified.
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In Table 5.2 we report the estimates of all competing models for each data set. 

Since fi ,a 2 in the normal distribution, H ,m  in the Student distribution, a f in the 

compound log-normal and normal model, a, b in the Weibull distribution, and a, c 

in the Stable distribution can not change the value of Tn, the estimates of these 

parameters are not reported. Moreover, the estimates of u in the Student model are 

less than 4 for both the post-crash sample and the entire sample, the C.L.T. of Tn is 

not applicable in either situation. Table 5.3 reports the asymptotic distributions and 

Table 5.4 shows the associated p-values.

A Monte Carlo study is presented to obtain the finite sample distribution of Tn and 

the power of the test. 3,000 replications are generated under H q and H i  respectively 

according to the estimates reported in Table 5.2. Tn is calculated for each replication 

and thus the finite sample distribution of T„ under H 0 and H i  is obtained. Following 

the finite sample distributions, we calculate the critical value and power of the test. 

In Table 5.4 we present the finite sample distribution of Tn under H q for all three 

samples. We report the 95% critical value in Table 5.6 and the power of the test 

in Table 5.7. We also perform a Monte Carlo study to obtain the sizes of the test 

in finite samples and compare them with the nominal sizes. 3,000 replications are 

generated under H q according to the estimates reported in the first column of Table

5.2 and each replication has 2,400 observations. The nominal sizes are chosen to 

be 0.1%, 0.5%, 1%, 5%, 10%, 20% and 50%. The sizes are reported on Table 5.8 and 

plotted in Figure 5.1.

A detailed examination of Table 5.3 and Table 5.5 reveals that the asymptotic 

distribution of Tn is very close to the finite sample distribution of Tn. Not surprisingly, 

therefore, we should expect the same conclusion from both Table 5.4 and Table 5.6. 

Table 5.4 indicates that, for all three samples, the normal distribution can be easily 

rejected by the proposed test statistic, consistent with most empirical results when
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some other methods, such as the sample kurtosis, are used. Furthermore, for both 

the pre-crash sample and the post-crash sample, most finite variance distributions can 

not be rejected. For example, for the pre-crash sample the Student distribution, the 

mixture of normals, the mixed diffusion-jump process and the compound log-normal 

and normal model can not be rejected at 5% significant level. For the post-crash 

sample the mixture of normals, the mixed diffusion-jump process and the compound 

log-normal and normal model can not be rejected at 5% significant level. This finding 

is consistent with what is normally found in most recent literature; see Tucker(1992), 

Kon(1984), Blattberg and Gonedes (1974). However, for the entire sample all the 

finite-variance models are rejected at 5% and even smaller significant levels. This 

finding is significant and suggests that when the value of Tn gets bigger and bigger, 

it is harder and harder for the data to be modeled by the existing finite-variance 

models. The result is not surprising since a finite-variance model is prone to generate 

a value of T  which is not large enough to match the empirical Tn. If we interpret Tn 

as a measure of risk, the above finding means that the existing finite-variance models 

have difficulties to explore the high risk that the actual stock markets have. Finally, 

Table 5.7 provides the evidence that our test has good power. From Table 5.6 and 

Figure 5.1, we note that in terms of the size of the test, it works quite well for the 

normal distribution, the Student t distribution, the mixture of normal distribution, 

the compound log-normal and normal model, and the Weibull distribution. Although 

the test under-rejects the mixed diffusion jump model, the differences between the 

sizes and the nominal sizes are not large.
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5.5 Conclusion

This paper has considered a test to compare the competing models for daily stock 

returns with particular concern about the variance behavior. In the recent literature, 

the likelihood ratio test and the Komogorov-Smimov test are used to compare the 

descriptive power of the competing models. Both tests suggest that distributions with 

finite variance outperform the distribution with infinite variance. A common feature 

for these two tests is that all the observations receive the same weight. Our test 

statistic, however, assigns different observations different weights. Obviously in our 

test statistic more extreme observations receive larger weight than less extreme ones. 

Consequently, our test statistic prefers a distribution whose tail behavior is closer to 

the empirical distribution to a distribution whose near-origin behavior is closer to the 

empirical distribution. Therefore, the empirical evidence suggests that most existing 

finite-variance models can not generate enough extreme observations although they 

may fit the empirical distribution well around the origin. The conclusion is that 

these finite-variance models are not always good candidates to describe stock returns. 

Therefore, one may expect a good candidate model could be either a distribution 

with infinite variance or a non-parametric model. Although most finite variance 

models have good descriptive power for both pre-crash sample and after-crash sample, 

they do not perform well for the entire sample. This provides the evidence that 

a structural change occurred due to the crash. The finding suggests that a good 

candidate among the finite variance family should be the one which can incorporate 

the structural change. Theoretically speaking, the mixture of normals is able to 

explain the structural change, however, it has been rejected for the entire sample. 

Therefore, a suitable structural change model which can serve as a good candidate 

for the entire sample has to be more complicated than the mixture of normals.
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We have to point out that, observing that stock returns are not independent, many 

researchers have investigated the time dependent models such as ARCH-type models 

(see Bollerslev, Chou and Kroner (1992)), stochastic volatility models (see Ghysels, 

Harvey, and Renault (1996)). Although we will generalize our test statistic into the 

dependent case in the future research, the comparison within the iid framework is 

still quite interesting due to at least two reasons. Firstly, Mittnik and Rachev (1993) 

argue that the iid assumption is not as crucial as it appears. Secondly, although the 

time-dependent model has had great practical success, the time-independent model 

is still attractive because of the associated mathematical convenience, for example, 

for pricing an option.
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Appendix A 

P roof of Theorem  5.2.1

Since the random variable X belongs a scale-location family, we assume that

F(X) =  G ( ^ ^ ) ,
<7

where F is the distribution function of X ,  n is the location of X , and a  is the scale 

of X .  Define Y  =  then G(y) is the distribution function of Y.  With the new 

notations, we have,

>l(X) = - I t  £ ( »  -  y a ?
7 7 — 1 1=1 

2 n

=  S s ^ Y ) ,

and

Fn (d0) =  inf{x : F„(x) > 0O}

= inf{x : Gn( - — - )  > 00}
G

= inf{ay : Gn(y) > M  

=  * G -l {0 0).

Therefore,

T„(X,9„) = S" (X)F - ^ l - e a) - F - ' ( 9 a)
_  _______ crsn(Y)________

a G - ' { l - 6 0) - a G - ' ( 0 0)
=  Tn(Y,9o). ■

P roof of Theorem  5.2.2

The theorem follows immediately from the strong law of large number, since Sn
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a a.s. and Qn(l -  Qo) -  Qn{Qo) -> <7i -  Qo a.s. I .

P roof of Theorem 5.2.3

Letting qii0 =  qi — qo, note that

o qi,oSn -  a ( Q n { 1 -  do) -  Qn(Oo) . . . .
( A .  I )

Q n { l  ~  Qo) ~  Qn{@o) Ql ~  Qo ( Q n ( l  ~  Qo) ~  Qn(Qa))Ql,0 

and

s „  =  f { £ ( * ,  -  I I ) 2 -  n ( X  -  y . ) 2 }  j  ( A . 2 )

f ,  . 1 ■ e ' r ^ v  >2 . 2 ,
=  CT( 1 + ( ^ T ) ^ S {(-Y- - ' 1) (n — l )a2 }

= g  i 1 + c t *  S ( ( x '  -  ^  - g 2 }  -  n % - l ) 7 l }

+0p( ( I | ; {, . v , - ^ - ^ }) 2+ ( ^
2 ^2 \ 2N-  A*) “  O’

* +  ^  £ { ( * <  -  /*)2 -  ^2} +  O p(i/")- 2n a  i=l

Therefore,

QlfiSn -  <?{Qn( 1 -  0o) -  Qn(Qo)) (A .3 )

<7i,o
2 n a  i=l

5Z{(^i — A4)2 ~  0-2} — ^  {Qn(l ~ fln) — Qn(Qo) — q 1,0} +  Op(l /n)

According to the Bahadur representation, we have

Q»(l -  «o) - H  A - r  Y , { I { X i  < ?i} -  (I -  «»)} +  oF(n - l/2)
n f \Q i) ,=i

and

Q»(«o) -  ?o =  f ) - r  E { / { - V i  <  9o} -  »o)> +  oP(.n~1/2)
n f \Q o) t=i
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P u ttin g  the above statem ents together yields

V n(q if lSn -  a(Qn(l -  90) -  Q„(0O))) (A.4)

+ J ^ £ , { n X i  < « . } - ( ! -  So)} -  < «o} -  So)} |  + op( l )

_  n - i /2 V"' /  9i,o ^  Y — ^ )2 — cr2) _  ^  9i} ~  do) _  GjljXi < gp} — dp) j
i=i 1 2<r 1 f ( q i ) / ( 9o) J

+  O p ( l )

This proves (2.4). (2.5) simply follows (2.4). I

P ro o f of Theorem  5.2.4

Expanding the expression for E2, we have,

V2 =  (  °  Y r f f ^ - v Y  i f  , g2S o ( l- S o ) /  1 1 \
\ 2 { q i - q o ) J  VI a  J J ( q i - q o ) '  V /2(<fo) f 2( q t ) '

2<t20^
( 9 i  -  9 o ) 4 / ( 9 o ) / ( ? i ) ’

Since /  is symmetric about /z, we have f(qo)  =  f (qi ) .  A simplification of above 

expression gives us (2.7). I

P ro o f of Theorem  5.2.5

Under Hq, the critical value (CV)is always a finite number. Then,

lim Pr(Reject_i/o|^fi-is true) =  lim Pr(Tn > CVIcr =  +oc) =  1.
n — f + o o  n - f + o o
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Appendix B

In this appendix we prove that a  and of can be only identified jointly in (3.6). 

According to the assumption, we have

Z  ~  exp(N(a, erf)) =  exp(a +  N(0,of))  = ea exp(N(0,  cr|)).

Therefore,

X i\Z  ~  N (0, Zaf)  = N{0, afea expN^ ) .

Obviously, a  and of  can not be identified if of  x eQ equals to a constant. H
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Sample 1: 76-85 Sample 2: 88-97 Sample 3: 76-97

Tn{9o =  0.25) 0.8406 0.9694 1.0174

Table 5.1: Tn in the Empirical Samples
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Sample 1: 76-85 Sample 2: 88-97 Sample 3: 76-97

Student v  =  6.387879 v =  3.994152 v =  3.938247

MN (ix =  -2.58732 x 10~4 

fi2 =  1.39901 x 10" 3 

<ri = 6.16532 x 10" 3 

cr2 =  1.16697 x 10~2 

oc =  0.673595

fjLi = 6.2079 x 10"4 

fi2 =  3.758 x 10“4 

o-! =  4.21049 x 10" 3 

a2 =  1.03509 x 10" 2 

a  = 0.567403

fix =  5.0964 x 10-4 

H2 =  -1.39886 x 10- 3 

ox =  7.20942 x 10" 3 

o2 =  2.64926 x 10“ 2 

a  =  0.952783

LN a\  =  0.4576217 o-f =  0.8810937 a2 =  0.9063072

MDJ H = -3.732 x 10" 4 

fj.Q =  7.06 x 10-4 

a 2 =  2.59 x 10~5 

<Tq =  4.73 x 10" 5 

A =  0.92847

H =  4.7576 x 10~4 

/lq = 3.05 x 10"° 

a 2 =  7.42 x 10~6 

g 2q  =  3.72 x lO"5 

A =  1.2796

H = 5.168 x 10-4 

fiQ =  -2.047 x 10~4 

a 2 =  2.527 x 10" 5 

o 2q  =  9.25 x 10" 5 

A =  0.515686

Weibull a  =  5.06930572 a  =  9.00619902 a  =  20.3287225

Stable a  =  1.697953 

0  =  0.2132737

a  =  1.501834 

0  =  -0.01664654

a  =  1.547262 

0 =  0.05912446

Table 5.2: Estimates of the Competing Models
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Sample 1: 76-85 Sample 2: 88-97 Sample 3: 76-97

Normal N\0.7413,1.97 x 10~4) iV(0.7413,1.97 x 10“4) iV(0.7413,8.42 x 10"5)

Student iV(0.8440,4.50 x 10"4) Not Applicable Not Applicable

MN iV(0.8402,3.25 x 10~4) /V(0.9802,5.57 x 10~4) :V(0.8953,4.18 x 10"4)

LN iV(0.8543,4.11 x 10~4) iV(0.9688,8.01 x 10“4) iV(0.9754,3.34 x 10"4)

MDJ iV(0.8511,2.75 x 10~4) iV(0.9648,4.32 x 10"4) iV(0.9425,1.57 x 10"4)

Weibull iV(0.7307,1.86 x 10"4) iV(0.7569,2.35 x 10"4) iV(0.7854,1.31 x 1CT4)

Table 5.3: Asymptotic Distribution of Tn under H0

Sample 1: 76-85 Sample 2: 88-97 Sample 3: 76-97

Normal 0 0 0

Student 0.5628 Not Applicable Not Applicable

MN 0.4907 0.6757 0

LN 0.7511508 0.4915044 0.01162844

MDJ 0.7368 0.4120 0

Weibull 0 0 0

Table 5.4: p-values of the Test
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Sample 1: 76-85 Sample 2: 88-97 Sample 3: 76-97

Normal (0.7420,1.96 x 10"4) (0.7420,1.96 x 10~4) (0.7418,8.98 x 10~5)

Student (0.8442,4.44 x 10"4) Not Applicable Not Applicable

MN (0.8316,3.46 x 10~4) (0.9760,5.76 x 10 '4) (0.8990,4.30 x 10~4)

LN (0.8551,4.10 x lO"4) (0.9691,8.07 x lO"4) (0.9759,3.5 x 10~4)

MDJ (0.8520,3.92 x 10"4) (0.9663,6.18 x 10"4) (0.9434,2.38 x 10~4)

Weibull (0.7313,1.92 x 10~4) (0.7575,2.40 x 10~4) (0.7855,1.26 x 10"4)

Table 5.5: Finite Sample Distribution of Tn under Ho

Sample 1: 76-85 Sample 2: 88-97 Sample 3: 76-97

Normal 0.7653077 0.7653077 0.7576618

Student 0.8814489 Not Applicable Not Applicable

MN 0.8622002 1.015521 0.9331136

LN 0.8904581 1.01819 1.006542

MDJ 0.8836779 1.007142 0.9692391

Weibull 0.754372 0.7837439 0.8034553

Table 5.6: Critical Value of the Finite Sample Distribution
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Sample 1: 76-85 Sample 2: 88-97 Sample 3: 76-97

Normal 1 1 1

Student 1 Not Applicable Not Applicable

MN 1 1 1

LN 1 1 1

MDJ 1 1 1

Weibull 1 1 1

Table 5.7: Power of the Test

Nominal size 0.001 0.005 0.01 0.05 0.1 0.2 0.5

Normal 0.003 0.009 0.012 0.056 0.114 0.223 0.507

Student 0.002 0.0067 0.0110 0.065 0.107 0.192 0.484

MN 0.001 0.0077 0.0117 0.0517 0.096 0.196 0.490

LN 0.0 0.0087 0.0197 0.0637 0.112 0.193 0.501

MDJ 0.007 0.0217 0.0250 0.0937 0.1450 0.257 0.513

Weibull 0.001 0.006 0.0137 0.062 0.114 0.218 0.519

Table 5.8: Size of the Test
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Figure 5.1: Size of the Test
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